IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v102y2016icp637-649.html
   My bibliography  Save this article

Combustion characteristics analysis of a free-piston engine generator coupling with dynamic and scavenging

Author

Listed:
  • Yuan, Chenheng
  • Feng, Huihua
  • He, Yituan
  • Xu, Jing

Abstract

Free-piston engine generator is an unconventional engine, which abandons the crank and connecting rod mechanism. This paper focused on a numerical simulation for the research on the combustion characteristics of a free-piston diesel engine generator. An iteration numerical simulation method was presented by adopting coupled models of zero-dimensional dynamics, multidimensional scavenging and combustion. According to the coupled parameters of these models, the effects of the piston motion on combustion process were investigated compared with a corresponding traditional crank engine. The results indicate that compared with the conventional engine, the free-piston engine generator has a longer combustion duration due to its faster piston mean velocity in combustion process. While the heat release before top dead center, the isochoric heat release, and the heat release during the premixed combustion period both were lower than the traditional engine, and the post-combustion became more intense for the free-piston engine, thus a slight disadvantage of indicated efficiency was found. In addition, the in-cylinder average gas temperature and pressure were generally lower than the traditional engine, which contribute to the distinct advantages in NO discharge of the free-piston engine generator.

Suggested Citation

  • Yuan, Chenheng & Feng, Huihua & He, Yituan & Xu, Jing, 2016. "Combustion characteristics analysis of a free-piston engine generator coupling with dynamic and scavenging," Energy, Elsevier, vol. 102(C), pages 637-649.
  • Handle: RePEc:eee:energy:v:102:y:2016:i:c:p:637-649
    DOI: 10.1016/j.energy.2016.02.131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216301931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Jin & Li, Qingfeng & Huang, Zhen, 2010. "Motion characteristic of a free piston linear engine," Applied Energy, Elsevier, vol. 87(4), pages 1288-1294, April.
    2. Hu, Jibin & Wu, Wei & Yuan, Shihua & Jing, Chongbo, 2011. "Mathematical modelling of a hydraulic free-piston engine considering hydraulic valve dynamics," Energy, Elsevier, vol. 36(10), pages 6234-6242.
    3. Feng, Huihua & Guo, Chendong & Yuan, Chenheng & Guo, Yuyao & Zuo, Zhengxing & Roskilly, Anthony Paul & Jia, Boru, 2016. "Research on combustion process of a free piston diesel linear generator," Applied Energy, Elsevier, vol. 161(C), pages 395-403.
    4. Mao, Jinlong & Zuo, Zhengxing & Li, Wen & Feng, Huihua, 2011. "Multi-dimensional scavenging analysis of a free-piston linear alternator based on numerical simulation," Applied Energy, Elsevier, vol. 88(4), pages 1140-1152, April.
    5. Li, Yaopeng & Jia, Ming & Liu, Yaodong & Xie, Maozhao, 2013. "Numerical study on the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine," Applied Energy, Elsevier, vol. 106(C), pages 184-197.
    6. Wu, Yining & Wang, Yang & Zhen, Xudong & Guan, Shuai & Wang, Jiancai, 2014. "Three-dimensional CFD (computational fluid dynamics) analysis of scavenging process in a two-stroke free-piston engine," Energy, Elsevier, vol. 68(C), pages 167-173.
    7. Kim, Jaeheun & Bae, Choongsik & Kim, Gangchul, 2013. "Simulation on the effect of the combustion parameters on the piston dynamics and engine performance using the Wiebe function in a free piston engine," Applied Energy, Elsevier, vol. 107(C), pages 446-455.
    8. Mikalsen, R. & Roskilly, A.P., 2009. "Coupled dynamic-multidimensional modelling of free-piston engine combustion," Applied Energy, Elsevier, vol. 86(1), pages 89-95, January.
    9. Mikalsen, R. & Roskilly, A.P., 2009. "A computational study of free-piston diesel engine combustion," Applied Energy, Elsevier, vol. 86(7-8), pages 1136-1143, July.
    10. Mao, Jinlong & Zuo, Zhengxing & Feng, Huihua, 2011. "Parameters coupling designation of diesel free-piston linear alternator," Applied Energy, Elsevier, vol. 88(12), pages 4577-4589.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Qiming & Feng, Huihua & Liu, Chang & Jia, Boru & Zhang, Zhiyuan & Zuo, Zhengxing, 2024. "Numerical investigation of the impact of dual spark plug coordinated ignition strategy on the combustion process in a free piston engine generator," Energy, Elsevier, vol. 290(C).
    2. Zhang, Zhiyuan & Feng, Huihua & Jia, Boru & Zuo, Zhengxing & Yan, Xiaodong & Smallbone, Andrew & Roskilly, Anthony Paul, 2022. "Identification and analysis on the variation sources of a dual-cylinder free piston engine generator and their influence on system operating characteristics," Energy, Elsevier, vol. 242(C).
    3. Wu, Limin & Feng, Huihua & Jia, Boru & Tang, Zhifeng & Yan, Xiaodong & Wang, Wei, 2022. "A novel method to investigate the power generation characteristics of linear generator in full frequency operation range applied to opposed-piston free-piston engine generator _ Simulation and test re," Energy, Elsevier, vol. 254(PB).
    4. Tian, Yaming & Zhang, Hongguang & Li, Jian & Hou, Xiaochen & Zhao, Tenglong & Yang, Fubin & Xu, Yonghong & Wang, Xin, 2018. "Development and validation of a single-piston free piston expander-linear generator for a small-scale organic Rankine cycle," Energy, Elsevier, vol. 161(C), pages 809-820.
    5. Geng, Heming & Wang, Yang & Zhen, Xudong & Liu, Yu & Li, Zhiyong, 2018. "Study on adaptive behavior and mechanism of compression ratio (or piston motion profile) for combustion parameters in hydraulic free piston engine," Applied Energy, Elsevier, vol. 211(C), pages 921-928.
    6. Yuan, Chenheng & Lu, Jiangchuan & Li, Shilei, 2023. "Thermoelectric coupling effect of secondary injection on gasoline fuel spray and mixing of a free vibration combustion alternator," Energy, Elsevier, vol. 281(C).
    7. Hung, Nguyen Ba & Lim, Ocktaeck, 2016. "A review of free-piston linear engines," Applied Energy, Elsevier, vol. 178(C), pages 78-97.
    8. Zhang, Zhiyuan & Wang, Jiayu & Xu, Lei & Feng, Huihua & Jia, Boru & He, Hongwen, 2024. "Investigation on the oscillation characteristics and performance prediction of a linear range extender: An analytical and numerical combined method," Energy, Elsevier, vol. 304(C).
    9. Xu, Yonghong & Tong, Liang & Zhang, Hongguang & Hou, Xiaochen & Yang, Fubin & Yu, Fei & Yang, Yuxin & Liu, Rong & Tian, Yaming & Zhao, Tenglong, 2018. "Experimental and simulation study of a free piston expander–linear generator for small-scale organic Rankine cycle," Energy, Elsevier, vol. 161(C), pages 776-791.
    10. Mitsuhide Sato & Takumi Goto & Jianping Zheng & Shoma Irie, 2020. "Resonant Combustion Start Considering Potential Energy of Free-Piston Engine Generator," Energies, MDPI, vol. 13(21), pages 1-17, November.
    11. Yuan, Chenheng & He, Lei & Zhou, Lifu, 2022. "Numerical simulation of the effect of spring dynamics on the combustion of free piston linear engine," Energy, Elsevier, vol. 254(PA).
    12. Yuan, Chenheng & Liu, Yang & Han, Cuijie & He, Yituan, 2019. "An investigation of mixture formation characteristics of a free-piston gasoline engine with direct-injection," Energy, Elsevier, vol. 173(C), pages 626-636.
    13. Guo, Chendong & Zuo, Zhengxing & Feng, Huihua & Jia, Boru & Roskilly, Tony, 2020. "Review of recent advances of free-piston internal combustion engine linear generator," Applied Energy, Elsevier, vol. 269(C).
    14. Yuxi Miao & Zhengxing Zuo & Huihua Feng & Chendong Guo & Yu Song & Boru Jia & Yuyao Guo, 2016. "Research on the Combustion Characteristics of a Free-Piston Gasoline Engine Linear Generator during the Stable Generating Process," Energies, MDPI, vol. 9(8), pages 1-19, August.
    15. Chen, Leiming & Xu, Zhaoping & Liu, Shuangshuang & Liu, Liang, 2022. "Dynamic modeling of a free-piston engine based on combustion parameters prediction," Energy, Elsevier, vol. 249(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Sun & Chi Zhang & Jinhua Chen & Fei Zhao & Youyong Liao & Guilin Yang & Chinyin Chen, 2016. "Decoupling Design and Verification of a Free-Piston Linear Generator," Energies, MDPI, vol. 9(12), pages 1-23, December.
    2. Wu, Limin & Feng, Huihua & Jia, Boru & Tang, Zhifeng & Yan, Xiaodong & Wang, Wei, 2022. "A novel method to investigate the power generation characteristics of linear generator in full frequency operation range applied to opposed-piston free-piston engine generator _ Simulation and test re," Energy, Elsevier, vol. 254(PB).
    3. Yan, Xiaodong & Feng, Huihua & Zuo, Zhengxing & Zhang, Zhiyuan & Wu, Limin & Shi, Cheng, 2021. "A study on the working characteristics of free piston linear generator with dual cylinder configuration by different secondary injection strategies," Energy, Elsevier, vol. 233(C).
    4. Yuxi Miao & Zhengxing Zuo & Huihua Feng & Chendong Guo & Yu Song & Boru Jia & Yuyao Guo, 2016. "Research on the Combustion Characteristics of a Free-Piston Gasoline Engine Linear Generator during the Stable Generating Process," Energies, MDPI, vol. 9(8), pages 1-19, August.
    5. Guo, Chendong & Zuo, Zhengxing & Feng, Huihua & Jia, Boru & Roskilly, Tony, 2020. "Review of recent advances of free-piston internal combustion engine linear generator," Applied Energy, Elsevier, vol. 269(C).
    6. Zhang, Zhiyuan & Wang, Jiayu & Xu, Lei & Feng, Huihua & Jia, Boru & He, Hongwen, 2024. "Investigation on the oscillation characteristics and performance prediction of a linear range extender: An analytical and numerical combined method," Energy, Elsevier, vol. 304(C).
    7. Lim, Ocktaeck & Hung, Nguyen Ba & Oh, Seokyoung & Kim, Gangchul & Song, Hanho & Iida, Norimasa, 2015. "A study of operating parameters on the linear spark ignition engine," Applied Energy, Elsevier, vol. 160(C), pages 746-760.
    8. Hung, Nguyen Ba & Lim, Ocktaeck, 2016. "A review of free-piston linear engines," Applied Energy, Elsevier, vol. 178(C), pages 78-97.
    9. Peng Sun & Chi Zhang & Jinhua Chen & Fei Zhao & Youyong Liao & Guilin Yang & Chinyin Chen, 2017. "Hybrid System Modeling and Full Cycle Operation Analysis of a Two-Stroke Free-Piston Linear Generator," Energies, MDPI, vol. 10(2), pages 1-23, February.
    10. Wu, Wei & Hu, Jibin & Yuan, Shihua, 2014. "Semi-analytical modelling of a hydraulic free-piston engine," Applied Energy, Elsevier, vol. 120(C), pages 75-84.
    11. Wu, Yining & Wang, Yang & Zhen, Xudong & Guan, Shuai & Wang, Jiancai, 2014. "Three-dimensional CFD (computational fluid dynamics) analysis of scavenging process in a two-stroke free-piston engine," Energy, Elsevier, vol. 68(C), pages 167-173.
    12. Feng, Huihua & Guo, Chendong & Yuan, Chenheng & Guo, Yuyao & Zuo, Zhengxing & Roskilly, Anthony Paul & Jia, Boru, 2016. "Research on combustion process of a free piston diesel linear generator," Applied Energy, Elsevier, vol. 161(C), pages 395-403.
    13. Zhang, Shuanlu & Zhao, Changlu & Zhao, Zhenfeng, 2015. "Stability analysis of hydraulic free piston engine," Applied Energy, Elsevier, vol. 157(C), pages 805-813.
    14. Yuan, Chenheng & Liu, Yang & Han, Cuijie & He, Yituan, 2019. "An investigation of mixture formation characteristics of a free-piston gasoline engine with direct-injection," Energy, Elsevier, vol. 173(C), pages 626-636.
    15. Mao, Jinlong & Zuo, Zhengxing & Feng, Huihua, 2011. "Parameters coupling designation of diesel free-piston linear alternator," Applied Energy, Elsevier, vol. 88(12), pages 4577-4589.
    16. Jia, Boru & Tian, Guohong & Feng, Huihua & Zuo, Zhengxing & Roskilly, A.P., 2015. "An experimental investigation into the starting process of free-piston engine generator," Applied Energy, Elsevier, vol. 157(C), pages 798-804.
    17. Ziwei Zhang & Huihua Feng & Zhengxing Zuo, 2020. "Numerical Investigation of a Free-Piston Hydrogen-Gasoline Engine Linear Generator," Energies, MDPI, vol. 13(18), pages 1-16, September.
    18. Jia, Boru & Zuo, Zhengxing & Feng, Huihua & Tian, Guohong & Smallbone, Andrew & Roskilly, A.P., 2016. "Effect of closed-loop controlled resonance based mechanism to start free piston engine generator: Simulation and test results," Applied Energy, Elsevier, vol. 164(C), pages 532-539.
    19. Zhang, Shuanlu & Zhao, Zhenfeng & Zhao, Changlu & Zhang, Fujun & Wang, Shan, 2017. "Cold starting characteristics analysis of hydraulic free piston engine," Energy, Elsevier, vol. 119(C), pages 879-886.
    20. Zhao, Zhenfeng & Wu, Dan & Zhang, Zhenyu & Zhang, Fujun & Zhao, Changlu, 2014. "Experimental investigation of the cycle-to-cycle variations in combustion process of a hydraulic free-piston engine," Energy, Elsevier, vol. 78(C), pages 257-265.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:102:y:2016:i:c:p:637-649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.