IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v252y2022ics0360544222009537.html
   My bibliography  Save this article

Synergistically improving electrocatalytic performance and CO2 tolerance of Fe-based cathode catalysts for solid oxide fuel cells

Author

Listed:
  • Gao, Juntao
  • Ma, Dan
  • Zhao, Hui
  • Li, Qiang
  • Lü, Zhe
  • Wei, Bo

Abstract

Fe-based pervoskite oxides Bi0.5Sr0.5Fe1−xZrxO3−δ (BSFZx, x = 0, 0.05, 0.10 and 0.15) were synthesized and developed by doping of cation Zr as possible cathodes for solid oxide fuel cells (SOFCs). Herein, we carefully investigated the effect of Zr-doped on BSFZx physicochemical property. The Bi0.5Sr0.5Fe0.90Zr0.10O3−δ (BSFZ0.10) cathode shows the lowest Rp values ranging from 0.52 to 0.11 Ω cm2 in the temperature range of 600–700 °C and the corresponding activation energy is about 1.135 eV. A single fuel cell with BSFZ0.10 cathode delivers a satisfactory electrocatalytic performance with a peak power density (PPD) as high as 1.2 W cm−2 at 700 °C. The BSFZ0.10 also exhibits unsurpassed stability by less change in Rp values under different CO2concentrations (5, 10 and 15 vol%). The excellent chemical stability and CO2 tolerance of BSFZx electrode material is mainly due to the doping of highly acidic Zr4+ and the increase of average metal bond energy (ABE). The present work highlights that BSFZx oxides are very promising candidate cathode catalysts for oxygen-conducting SOFCs.

Suggested Citation

  • Gao, Juntao & Ma, Dan & Zhao, Hui & Li, Qiang & Lü, Zhe & Wei, Bo, 2022. "Synergistically improving electrocatalytic performance and CO2 tolerance of Fe-based cathode catalysts for solid oxide fuel cells," Energy, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009537
    DOI: 10.1016/j.energy.2022.124050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222009537
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Yifeng & Wang, Shun & Pan, Zehua & Yin, Bo, 2021. "Electrochemical CO2 reduction to CO using solid oxide electrolysis cells with high-performance Ta-doped bismuth strontium ferrite air electrode," Energy, Elsevier, vol. 228(C).
    2. Yuan Zhang & Bin Chen & Daqin Guan & Meigui Xu & Ran Ran & Meng Ni & Wei Zhou & Ryan O’Hayre & Zongping Shao, 2021. "Thermal-expansion offset for high-performance fuel cell cathodes," Nature, Nature, vol. 591(7849), pages 246-251, March.
    3. Cai, Weizi & Cao, Dan & Zhou, Mingyang & Yan, Xiaomin & Li, Yuzhi & Wu, Zhen & Lü, Shengping & Mao, Caiyun & Xie, Yongmin & Zhao, Caiwen & Yu, Jialing & Ni, Meng & Liu, Jiang & Wang, Hailin, 2020. "Sulfur-tolerant Fe-doped La0·3Sr0·7TiO3 perovskite as anode of direct carbon solid oxide fuel cells," Energy, Elsevier, vol. 211(C).
    4. Cascos, V. & Troncoso, L. & Alonso, J.A. & Fernández-Díaz, M.T., 2017. "Design of new Ga-doped SrMoO3 perovskites performing as anode materials in SOFC," Renewable Energy, Elsevier, vol. 111(C), pages 476-483.
    5. Asensio, Antonio Maria & Clematis, Davide & Viviani, Massimo & Carpanese, M. Paola & Presto, Sabrina & Cademartori, Davide & Cabot, Pere L. & Barbucci, Antonio, 2021. "Impregnation of microporous SDC scaffold as stable solid oxide cell BSCF-based air electrode," Energy, Elsevier, vol. 237(C).
    6. Wang, Heng & Zhao, Hongbin & Du, Huicheng & Zhao, Zefeng & Zhang, Taiheng, 2022. "Thermodynamic performance study of a new diesel-fueled CLHG/SOFC/STIG cogeneration system with CO2 recovery," Energy, Elsevier, vol. 246(C).
    7. Chen, Guihua & Wang, Yong & Sunarso, Jaka & Liang, Fengli & Wang, Huanping, 2016. "A new scandium and niobium co-doped cobalt-free perovskite cathode for intermediate-temperature solid oxide fuel cells," Energy, Elsevier, vol. 95(C), pages 137-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanif, Muhammad Bilal & Rauf, Sajid & Sultan, Amir & Tayyab, Zuhra & Zheng, Kun & Makarov, Hryhorii & Madej, Dominika & Łasocha, Wiesław & Roch, Tomas & Mosiałek, Michał & Baker, Richard T. & Li, Chen, 2024. "Boosting the electrochemical performance of oxygen electrodes via the formation of LSCF-BaCe0.9–xMoxY0.1O3–δ triple conducting composite for solid oxide fuel cells: Part II," Energy, Elsevier, vol. 289(C).
    2. Ao, Ran & Ma, Liping & Guo, Zhiying & Dai, Quxiu & Xie, Longgui & Yang, Jie, 2024. "Positive effects of the Sr doping on LaCoO3 perovskites for simultaneous catalytic oxidation performances of NO and Hg0," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanif, Muhammad Bilal & Rauf, Sajid & Sultan, Amir & Tayyab, Zuhra & Zheng, Kun & Makarov, Hryhorii & Madej, Dominika & Łasocha, Wiesław & Roch, Tomas & Mosiałek, Michał & Baker, Richard T. & Li, Chen, 2024. "Boosting the electrochemical performance of oxygen electrodes via the formation of LSCF-BaCe0.9–xMoxY0.1O3–δ triple conducting composite for solid oxide fuel cells: Part II," Energy, Elsevier, vol. 289(C).
    2. Han, Yuan & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin, 2021. "An efficient hybrid system using a graphene-based cathode vacuum thermionic energy converter to harvest the waste heat from a molten hydroxide direct carbon fuel cell," Energy, Elsevier, vol. 223(C).
    3. Jiao, Yong & Zhang, Liqin & An, Wenting & Zhou, Wei & Sha, Yujing & Shao, Zongping & Bai, Jianping & Li, Si-Dian, 2016. "Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane," Energy, Elsevier, vol. 113(C), pages 432-443.
    4. Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Fu, Quanrong & Tian, Chunyu & Hun, Lianming & Wang, Xin & Li, Zhiyi & Liu, Zhijun & Wei, Wei, 2024. "Ni agglomeration and performance degradation of solid oxide fuel cell: A model-based quantitative study and microstructure optimization," Energy, Elsevier, vol. 289(C).
    6. Ze Liu & Yufei Song & Xiaolu Xiong & Yuxuan Zhang & Jingzeng Cui & Jianqiu Zhu & Lili Li & Jing Zhou & Chuan Zhou & Zhiwei Hu & Guntae Kim & Francesco Ciucci & Zongping Shao & Jian-Qiang Wang & Linjua, 2023. "Sintering-induced cation displacement in protonic ceramics and way for its suppression," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Zeng, Rong & Gan, Jijuan & Guo, Baoxin & Zhang, Xiaofeng & Li, Hongqiang & Yin, Wei & Zhang, Guoqiang, 2023. "Thermodynamic performance analysis of solid oxide fuel cell - combined cooling, heating and power system with integrated supercritical CO2 power cycle - organic Rankine cycle and absorption refrigerat," Energy, Elsevier, vol. 283(C).
    8. Asensio, Antonio Maria & Clematis, Davide & Viviani, Massimo & Carpanese, M. Paola & Presto, Sabrina & Cademartori, Davide & Cabot, Pere L. & Barbucci, Antonio, 2021. "Impregnation of microporous SDC scaffold as stable solid oxide cell BSCF-based air electrode," Energy, Elsevier, vol. 237(C).
    9. Zhiheng Li & Xin Mao & Desheng Feng & Mengran Li & Xiaoyong Xu & Yadan Luo & Linzhou Zhuang & Rijia Lin & Tianjiu Zhu & Fengli Liang & Zi Huang & Dong Liu & Zifeng Yan & Aijun Du & Zongping Shao & Zho, 2024. "Prediction of perovskite oxygen vacancies for oxygen electrocatalysis at different temperatures," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Zheng, Yifeng & Wang, Shun & Pan, Zehua & Yin, Bo, 2021. "Electrochemical CO2 reduction to CO using solid oxide electrolysis cells with high-performance Ta-doped bismuth strontium ferrite air electrode," Energy, Elsevier, vol. 228(C).
    11. Yang, Yang & Liu, Fangsheng & Han, Xu & Wang, Xinxin & Dong, Dehua & Chen, Yan & Feng, Peizhong & Khan, Majid & Wang, Shaorong & Ling, Yihan, 2022. "Highly efficient and stable fuel-catalyzed dendritic microchannels for dilute ethanol fueled solid oxide fuel cells," Applied Energy, Elsevier, vol. 307(C).
    12. Xu, Yuhao & Luo, Xiaobing & Tu, Zhengkai & Siew Hwa Chan,, 2022. "Multi-criteria assessment of solid oxide fuel cell–combined cooling, heating, and power system model for residential application," Energy, Elsevier, vol. 259(C).
    13. Dongxu Zhang & Ting Min & Ming Jiang & Yaxiong Yu & Qiang Zhou, 2021. "Numerical Simulation of Fluidized Bed Gasifier Coupled with Solid Oxide Fuel Cell Fed with Solid Carbon," Energies, MDPI, vol. 14(10), pages 1-24, May.
    14. Wang, Chen & He, Qijiao & Li, Zheng & Yu, Jie & Bello, Idris Temitope & Zheng, Keqing & Han, Minfang & Ni, Meng, 2024. "A novel in-tube reformer for solid oxide fuel cell for performance improvement and efficient thermal management: A numerical study based on artificial neural network and genetic algorithm," Applied Energy, Elsevier, vol. 357(C).
    15. Xie, Yongmin & Xiao, Jie & Liu, Qingsheng & Wang, Xiaoqiang & Liu, Jiang & Wu, Peijia & Ouyang, Shaobo, 2021. "Highly efficient utilization of walnut shell biochar through a facile designed portable direct carbon solid oxide fuel cell stack," Energy, Elsevier, vol. 227(C).
    16. Meng Xu & Qiang Li & Yuzhu Song & Yuanji Xu & Andrea Sanson & Naike Shi & Na Wang & Qiang Sun & Changtian Wang & Xin Chen & Yongqiang Qiao & Feixiang Long & Hui Liu & Qiang Zhang & Alessandro Venier &, 2023. "Giant uniaxial negative thermal expansion in FeZr2 alloy over a wide temperature range," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Yang, Yang & Li, Tian & Feng, Peizhong & Wang, Xinxin & Wang, Shaorong & Ling, Yihan & Shao, Zongping, 2022. "Highly efficient conversion of oxygen-bearing low concentration coal-bed methane into power via solid oxide fuel cell integrated with an activated catalyst-modified anode microchannel," Applied Energy, Elsevier, vol. 328(C).
    18. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi, 2023. "Comprehensive sustainability assessment of a novel solar-driven PEMEC-SOFC-based combined cooling, heating, power, and storage (CCHPS) system based on life cycle method," Energy, Elsevier, vol. 265(C).
    19. Li, Chaolei & Wu, Anqi & Xi, Chengqiao & Guan, Wanbing & Chen, Liang & Singhal, Subhash C., 2022. "High reversible cycling performance of carbon dioxide electrolysis by flat-tube solid oxide cell," Applied Energy, Elsevier, vol. 314(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.