IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223033790.html
   My bibliography  Save this article

Boosting the electrochemical performance of oxygen electrodes via the formation of LSCF-BaCe0.9–xMoxY0.1O3–δ triple conducting composite for solid oxide fuel cells: Part II

Author

Listed:
  • Hanif, Muhammad Bilal
  • Rauf, Sajid
  • Sultan, Amir
  • Tayyab, Zuhra
  • Zheng, Kun
  • Makarov, Hryhorii
  • Madej, Dominika
  • Łasocha, Wiesław
  • Roch, Tomas
  • Mosiałek, Michał
  • Baker, Richard T.
  • Li, Cheng-Xin
  • Motola, Martin

Abstract

This research is the continuation of our previous work, in which we introduced novel proton-conducting electrolytes BaCe0.9–xMoxY0.1O3–δ (BCMxY; x = 0.025, 0.05). In this study, we explore the potential of the proton-conducting BCM0.025Y electrolyte by creating a composite with La0.6Sr0.4Co0.2Fe0.8O3–δ (LSCF) to form triple conducting electrodes for solid oxide fuel cells (SOFC). The formation of the LSCF-BCM0.025Y composite enhances both the three-phase reaction interface length and the concentration of oxygen vacancies, contributing to improved dissociation rates and enhanced oxygen adsorption. The desired characteristics, including density, structure, composition, electrochemical performance, and thermal stability, have been confirmed through a comprehensive set of analyses including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS), and thermogravimetric analysis (TGA) coupled with differential scanning calorimetry (DSC), respectively. The cell configuration of Ni-YSZ | BCZY | LSCF-BCM0.025Y exhibited a remarkable maximum power density (MPD) of 418.7 mW cm−2, which is approximately 29 % higher than that achieved with a typical LSCF cathode (325.6 mW cm−2) at an operating temperature of 600 °C. The outstanding performance and enduring stability of the LSCF-BCM0.025Y composite over a 500 h period demonstrate its potential as a promising cathode material for intermediate-temperature SOFCs.

Suggested Citation

  • Hanif, Muhammad Bilal & Rauf, Sajid & Sultan, Amir & Tayyab, Zuhra & Zheng, Kun & Makarov, Hryhorii & Madej, Dominika & Łasocha, Wiesław & Roch, Tomas & Mosiałek, Michał & Baker, Richard T. & Li, Chen, 2024. "Boosting the electrochemical performance of oxygen electrodes via the formation of LSCF-BaCe0.9–xMoxY0.1O3–δ triple conducting composite for solid oxide fuel cells: Part II," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033790
    DOI: 10.1016/j.energy.2023.129985
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223033790
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiao, Yong & Zhang, Liqin & An, Wenting & Zhou, Wei & Sha, Yujing & Shao, Zongping & Bai, Jianping & Li, Si-Dian, 2016. "Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane," Energy, Elsevier, vol. 113(C), pages 432-443.
    2. Lei, Libin & Mo, Yingyu & Huang, Yue & Qiu, Ruiming & Tian, Zhipeng & Wang, Junyao & Liu, Jianping & Chen, Ying & Zhang, Jihao & Tao, Zetian & Liang, Bo & Wang, Chao, 2023. "Revealing and quantifying the role of oxygen-ionic current in proton-conducting solid oxide fuel cells: A modeling study," Energy, Elsevier, vol. 276(C).
    3. Gao, Juntao & Ma, Dan & Zhao, Hui & Li, Qiang & Lü, Zhe & Wei, Bo, 2022. "Synergistically improving electrocatalytic performance and CO2 tolerance of Fe-based cathode catalysts for solid oxide fuel cells," Energy, Elsevier, vol. 252(C).
    4. Mehran, Muhammad Taqi & Khan, Muhammad Zubair & Song, Rak-Hyun & Lim, Tak-Hyoung & Naqvi, Muhammad & Raza, Rizwan & Zhu, Bin & Hanif, Muhammad Bilal, 2023. "A comprehensive review on durability improvement of solid oxide fuel cells for commercial stationary power generation systems," Applied Energy, Elsevier, vol. 352(C).
    5. Li, Haolong & Zhang, Tuo & Wei, Wei & Liu, Fengxia & Xu, Xiaofei & Li, Zhiyi & Liu, Zhijun, 2023. "Performance enhancement of multi-gas compatible dual-channel interconnector for planar solid oxide fuel cells," Energy, Elsevier, vol. 283(C).
    6. Chen, Guihua & Wang, Yong & Sunarso, Jaka & Liang, Fengli & Wang, Huanping, 2016. "A new scandium and niobium co-doped cobalt-free perovskite cathode for intermediate-temperature solid oxide fuel cells," Energy, Elsevier, vol. 95(C), pages 137-143.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanveer, Waqas Hassan & Rezk, Hegazy & Nassef, Ahmed & Abdelkareem, Mohammad Ali & Kolosz, Ben & Karuppasamy, K. & Aslam, Jawad & Gilani, Syed Omer, 2020. "Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization," Energy, Elsevier, vol. 204(C).
    2. Gao, Juntao & Ma, Dan & Zhao, Hui & Li, Qiang & Lü, Zhe & Wei, Bo, 2022. "Synergistically improving electrocatalytic performance and CO2 tolerance of Fe-based cathode catalysts for solid oxide fuel cells," Energy, Elsevier, vol. 252(C).
    3. Jiao, Yong & Zhang, Liqin & An, Wenting & Zhou, Wei & Sha, Yujing & Shao, Zongping & Bai, Jianping & Li, Si-Dian, 2016. "Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane," Energy, Elsevier, vol. 113(C), pages 432-443.
    4. Marek Skrzypkiewicz & Michal Wierzbicki & Stanislaw Jagielski & Yevgeniy Naumovich & Konrad Motylinski & Jakub Kupecki & Agnieszka Zurawska & Magdalena Kosiorek, 2022. "Influence of the Contamination of Fuel with Fly Ash Originating from Biomass Gasification on the Performance of the Anode-Supported SOFC," Energies, MDPI, vol. 15(4), pages 1-17, February.
    5. Asensio, Antonio Maria & Clematis, Davide & Viviani, Massimo & Carpanese, M. Paola & Presto, Sabrina & Cademartori, Davide & Cabot, Pere L. & Barbucci, Antonio, 2021. "Impregnation of microporous SDC scaffold as stable solid oxide cell BSCF-based air electrode," Energy, Elsevier, vol. 237(C).
    6. Mohamad Fairus Rabuni & Tao Li & Mohd Hafiz Dzarfan Othman & Faidzul Hakim Adnan & Kang Li, 2023. "Progress in Solid Oxide Fuel Cells with Hydrocarbon Fuels," Energies, MDPI, vol. 16(17), pages 1-36, September.
    7. Mohammed, Hanin & Al-Othman, Amani & Nancarrow, Paul & Tawalbeh, Muhammad & El Haj Assad, Mamdouh, 2019. "Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency," Energy, Elsevier, vol. 172(C), pages 207-219.
    8. Yan, Dong & Liang, Lingjiang & Yang, Jiajun & Zhang, Tao & Pu, Jian & Chi, Bo & Li, Jian, 2017. "Performance degradation and analysis of 10-cell anode-supported SOFC stack with external manifold structure," Energy, Elsevier, vol. 125(C), pages 663-670.
    9. Ao, Ran & Ma, Liping & Guo, Zhiying & Dai, Quxiu & Xie, Longgui & Yang, Jie, 2024. "Positive effects of the Sr doping on LaCoO3 perovskites for simultaneous catalytic oxidation performances of NO and Hg0," Energy, Elsevier, vol. 290(C).
    10. Han, Yuan & Gao, Wenzhi & Qin, Yanzhou, 2024. "Conceptual design and multi-objective optimization of a hybrid system based on direct ammonia protonic ceramic fuel cell and alkali metal thermal electric converter," Energy, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.