IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v228y2021ics0360544221008288.html
   My bibliography  Save this article

Electrochemical CO2 reduction to CO using solid oxide electrolysis cells with high-performance Ta-doped bismuth strontium ferrite air electrode

Author

Listed:
  • Zheng, Yifeng
  • Wang, Shun
  • Pan, Zehua
  • Yin, Bo

Abstract

Electrochemical CO2 reduction to CO by using solid-oxide electrolysis cells (SOECs) is a promising option to produce useable fuels using renewable energy. However, traditional cobalt-based air electrodes exhibit high thermal-expansion coefficients and a tendency of Co segregation, compromising long-term stability. Here, Co-free Bi0.5Sr0.5FeO3-δ perovskite was explored with Ta doping into the B-site as the air electrode (BSFTx). Doping Ta enabled a decrease in polarization resistance by 45% from 0.31 Ω cm2 to 0.17 Ω cm2 at 700 °C. The distribution function of relaxation times analysis suggested that the observed improvements can be ascribed to the enhanced mass-transfer processes, which include oxygen diffusion, association, and desorption. The performance of a cathode-supported Ni-YSZ (ytttria-stabilized zirconia)|YSZ|Gd-doped ceria|BSFTx cell was characterized by an electrolysis current of −0.81 A cm−2 under 1.5 V at 800 °C, which corresponds to a CO-production rate of 4.2 × 103 nmol s−1 cm−2 and an electrical efficiency of 98%. Excellent stability of the cell was also demonstrated by steady current density during the 32-h test executed under 1.2 V at 800 °C. The nearly 100% electrical efficiency and the satisfactory performance and stability of SOEC with Ta-doped BSF air electrode indicated its potential use in CO2 reduction technique.

Suggested Citation

  • Zheng, Yifeng & Wang, Shun & Pan, Zehua & Yin, Bo, 2021. "Electrochemical CO2 reduction to CO using solid oxide electrolysis cells with high-performance Ta-doped bismuth strontium ferrite air electrode," Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008288
    DOI: 10.1016/j.energy.2021.120579
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221008288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Weizi & Cao, Dan & Zhou, Mingyang & Yan, Xiaomin & Li, Yuzhi & Wu, Zhen & Lü, Shengping & Mao, Caiyun & Xie, Yongmin & Zhao, Caiwen & Yu, Jialing & Ni, Meng & Liu, Jiang & Wang, Hailin, 2020. "Sulfur-tolerant Fe-doped La0·3Sr0·7TiO3 perovskite as anode of direct carbon solid oxide fuel cells," Energy, Elsevier, vol. 211(C).
    2. Ehteshami, Seyyed Mohsen Mousavi & Chan, S.H., 2014. "The role of hydrogen and fuel cells to store renewable energy in the future energy network – potentials and challenges," Energy Policy, Elsevier, vol. 73(C), pages 103-109.
    3. Petrollese, Mario & Seche, Pierluigi & Cocco, Daniele, 2019. "Analysis and optimization of solar-pumped hydro storage systems integrated in water supply networks," Energy, Elsevier, vol. 189(C).
    4. Clausen, Lasse R. & Butera, Giacomo & Jensen, Søren Højgaard, 2019. "High efficiency SNG production from biomass and electricity by integrating gasification with pressurized solid oxide electrolysis cells," Energy, Elsevier, vol. 172(C), pages 1117-1131.
    5. Samavati, Mahrokh & Santarelli, Massimo & Martin, Andrew & Nemanova, Vera, 2017. "Thermodynamic and economy analysis of solid oxide electrolyser system for syngas production," Energy, Elsevier, vol. 122(C), pages 37-49.
    6. Jiang, Yinghua & Kang, Lixia & Liu, Yongzhong, 2020. "Optimal configuration of battery energy storage system with multiple types of batteries based on supply-demand characteristics," Energy, Elsevier, vol. 206(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Juntao & Ma, Dan & Zhao, Hui & Li, Qiang & Lü, Zhe & Wei, Bo, 2022. "Synergistically improving electrocatalytic performance and CO2 tolerance of Fe-based cathode catalysts for solid oxide fuel cells," Energy, Elsevier, vol. 252(C).
    2. Li, Chaolei & Wu, Anqi & Xi, Chengqiao & Guan, Wanbing & Chen, Liang & Singhal, Subhash C., 2022. "High reversible cycling performance of carbon dioxide electrolysis by flat-tube solid oxide cell," Applied Energy, Elsevier, vol. 314(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    2. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    5. Savolainen, Rebecka & Lahdelma, Risto, 2022. "Optimization of renewable energy for buildings with energy storages and 15-minute power balance," Energy, Elsevier, vol. 243(C).
    6. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 270(C).
    7. Gao, Juntao & Ma, Dan & Zhao, Hui & Li, Qiang & Lü, Zhe & Wei, Bo, 2022. "Synergistically improving electrocatalytic performance and CO2 tolerance of Fe-based cathode catalysts for solid oxide fuel cells," Energy, Elsevier, vol. 252(C).
    8. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    9. Zhang, Pengfei & Ma, Chao & Lian, Jijian & Li, Peiyao & Liu, Lu, 2024. "Medium- and long-term operation optimization of the LCHES-WP hybrid power system considering the settlement rules of the electricity trading market," Applied Energy, Elsevier, vol. 359(C).
    10. Riccardo Balzarotti & Saverio Latorrata & Marco Mariani & Paola Gallo Stampino & Giovanni Dotelli, 2020. "Optimization of Perfluoropolyether-Based Gas Diffusion Media Preparation for PEM Fuel Cells," Energies, MDPI, vol. 13(7), pages 1-14, April.
    11. Furtado Amaral, Andre & Previtali, Daniele & Bassani, Andrea & Italiano, Cristina & Palella, Alessandra & Pino, Lidia & Vita, Antonio & Bozzano, Giulia & Pirola, Carlo & Manenti, Flavio, 2020. "Biogas beyond CHP: The HPC (heat, power & chemicals) process," Energy, Elsevier, vol. 203(C).
    12. Reznicek, Evan P. & Braun, Robert J., 2020. "Reversible solid oxide cell systems for integration with natural gas pipeline and carbon capture infrastructure for grid energy management," Applied Energy, Elsevier, vol. 259(C).
    13. AlZahrani, Abdullah A. & Dincer, Ibrahim, 2022. "Assessment of a thin-electrolyte solid oxide cell for hydrogen production," Energy, Elsevier, vol. 243(C).
    14. Emmanouil, Stergios & Nikolopoulos, Efthymios I. & François, Baptiste & Brown, Casey & Anagnostou, Emmanouil N., 2021. "Evaluating existing water supply reservoirs as small-scale pumped hydroelectric storage options – A case study in Connecticut," Energy, Elsevier, vol. 226(C).
    15. Wu, Yaling & Liu, Zhongbing & Liu, Jiangyang & Xiao, Hui & Liu, Ruimiao & Zhang, Ling, 2022. "Optimal battery capacity of grid-connected PV-battery systems considering battery degradation," Renewable Energy, Elsevier, vol. 181(C), pages 10-23.
    16. Mahrokh Samavati & Andrew Martin & Massimo Santarelli & Vera Nemanova, 2018. "Synthetic Diesel Production as a Form of Renewable Energy Storage," Energies, MDPI, vol. 11(5), pages 1-21, May.
    17. Pérez-Trujillo, Juan Pedro & Elizalde-Blancas, Francisco & McPhail, Stephen J. & Della Pietra, Massimiliano & Bosio, Barbara, 2020. "Preliminary theoretical and experimental analysis of a Molten Carbonate Fuel Cell operating in reversible mode," Applied Energy, Elsevier, vol. 263(C).
    18. Yin, Linfei & Luo, Shikui & Ma, Chenxiao, 2021. "Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids," Energy, Elsevier, vol. 232(C).
    19. Dongxu Zhang & Ting Min & Ming Jiang & Yaxiong Yu & Qiang Zhou, 2021. "Numerical Simulation of Fluidized Bed Gasifier Coupled with Solid Oxide Fuel Cell Fed with Solid Carbon," Energies, MDPI, vol. 14(10), pages 1-24, May.
    20. Xie, Yongmin & Xiao, Jie & Liu, Qingsheng & Wang, Xiaoqiang & Liu, Jiang & Wu, Peijia & Ouyang, Shaobo, 2021. "Highly efficient utilization of walnut shell biochar through a facile designed portable direct carbon solid oxide fuel cell stack," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.