An efficient hybrid system using a graphene-based cathode vacuum thermionic energy converter to harvest the waste heat from a molten hydroxide direct carbon fuel cell
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.120095
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- J.W. Schwede & T. Sarmiento & V.K. Narasimhan & S.J. Rosenthal & D.C. Riley & F. Schmitt & I. Bargatin & K. Sahasrabuddhe & R.T. Howe & J.S. Harris & N.A. Melosh & Z.-X. Shen, 2013. "Photon-enhanced thermionic emission from heterostructures with low interface recombination," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
- Wang, Yuan & Cai, Ling & Liu, Tie & Wang, Junyi & Chen, Jincan, 2015. "An efficient strategy exploiting the waste heat in a solid oxide fuel cell system," Energy, Elsevier, vol. 93(P1), pages 900-907.
- Zhang, Xiuqin & Liu, Huiying & Ni, Meng & Chen, Jincan, 2015. "Performance evaluation and parametric optimum design of a syngas molten carbonate fuel cell and gas turbine hybrid system," Renewable Energy, Elsevier, vol. 80(C), pages 407-414.
- Wang, Yuan & Su, Shanhe & Liu, Tie & Su, Guozhen & Chen, Jincan, 2015. "Performance evaluation and parametric optimum design of an updated thermionic-thermoelectric generator hybrid system," Energy, Elsevier, vol. 90(P2), pages 1575-1583.
- Guo, Xinru & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Wang, Fu & Miao, He & Yuan, Jinliang & Hou, Shujin, 2020. "A new hybrid system composed of high-temperature proton exchange fuel cell and two-stage thermoelectric generator with Thomson effect: Energy and exergy analyses," Energy, Elsevier, vol. 195(C).
- Ding, Xiaoyi & Sun, Wei & Harrison, Gareth P. & Lv, Xiaojing & Weng, Yiwu, 2020. "Multi-objective optimization for an integrated renewable, power-to-gas and solid oxide fuel cell/gas turbine hybrid system in microgrid," Energy, Elsevier, vol. 213(C).
- Wu, Sijie & Zhang, Houcheng & Ni, Meng, 2016. "Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 112(C), pages 520-527.
- Rahman, Ehsanur & Nojeh, Alireza, 2020. "Harvesting solar thermal energy with a micro-gap thermionic-thermoelectric hybrid energy converter: Model development, energy exchange analysis, and performance optimization," Energy, Elsevier, vol. 204(C).
- Zhang, Houcheng & Xu, Haoran & Chen, Bin & Dong, Feifei & Ni, Meng, 2017. "Two-stage thermoelectric generators for waste heat recovery from solid oxide fuel cells," Energy, Elsevier, vol. 132(C), pages 280-288.
- M. Massicotte & P. Schmidt & F. Vialla & K. Watanabe & T. Taniguchi & K. J. Tielrooij & F. H. L. Koppens, 2016. "Photo-thermionic effect in vertical graphene heterostructures," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
- Zhang, Houcheng & Chen, Liwei & Zhang, Jinjie & Chen, Jincan, 2014. "Performance analysis of a direct carbon fuel cell with molten carbonate electrolyte," Energy, Elsevier, vol. 68(C), pages 292-300.
- Cai, Weizi & Cao, Dan & Zhou, Mingyang & Yan, Xiaomin & Li, Yuzhi & Wu, Zhen & Lü, Shengping & Mao, Caiyun & Xie, Yongmin & Zhao, Caiwen & Yu, Jialing & Ni, Meng & Liu, Jiang & Wang, Hailin, 2020. "Sulfur-tolerant Fe-doped La0·3Sr0·7TiO3 perovskite as anode of direct carbon solid oxide fuel cells," Energy, Elsevier, vol. 211(C).
- Guo, Liang & Calo, J.M. & Kearney, Clare & Grimshaw, Pengpeng, 2014. "The anodic reaction zone and performance of different carbonaceous fuels in a batch molten hydroxide direct carbon fuel cell," Applied Energy, Elsevier, vol. 129(C), pages 32-38.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liang, Tao & Chen, Jingyi & Chen, Xiaohang & Su, Shanhe & Chen, Jincan, 2022. "Trade-off between the near-field heat transfer and the space charge effect in graphene-anode thermionic energy converters," Energy, Elsevier, vol. 260(C).
- Liang, Tao & Hu, Cong & Fu, Tong & Su, Shanhe & Chen, Jincan, 2022. "The maximum efficiency enhancement of a solar-driven graphene-anode thermionic converter realizing total photon reflection," Energy, Elsevier, vol. 239(PA).
- Han, Yuan & Gao, Wenzhi & Qin, Yanzhou, 2024. "Conceptual design and multi-objective optimization of a hybrid system based on direct ammonia protonic ceramic fuel cell and alkali metal thermal electric converter," Energy, Elsevier, vol. 297(C).
- Groenewald, Roelof E., 2022. "Impact of Coulomb scattering on argon plasma based thermionic converter performance," Energy, Elsevier, vol. 261(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
- Rahmad Syah & Afshin Davarpanah & Mahyuddin K. M. Nasution & Faisal Amri Tanjung & Meysam Majidi Nezhad & Mehdi Nesaht, 2021. "A Comprehensive Thermoeconomic Evaluation and Multi-Criteria Optimization of a Combined MCFC/TEG System," Sustainability, MDPI, vol. 13(23), pages 1-29, November.
- Liang, Tao & Hu, Cong & Fu, Tong & Su, Shanhe & Chen, Jincan, 2022. "The maximum efficiency enhancement of a solar-driven graphene-anode thermionic converter realizing total photon reflection," Energy, Elsevier, vol. 239(PA).
- Xu, Haoran & Chen, Bin & Tan, Peng & Cai, Weizi & Wu, Yiyang & Zhang, Houcheng & Ni, Meng, 2018. "A feasible way to handle the heat management of direct carbon solid oxide fuel cells," Applied Energy, Elsevier, vol. 226(C), pages 881-890.
- Zhang, Xin & Cai, Ling & Liao, Tianjun & Zhou, Yinghui & Zhao, Yingru & Chen, Jincan, 2018. "Exploiting the waste heat from an alkaline fuel cell via electrochemical cycles," Energy, Elsevier, vol. 142(C), pages 983-990.
- Xu, Haoran & Chen, Bin & Tan, Peng & Zhang, Houcheng & Yuan, Jinliang & Liu, Jiang & Ni, Meng, 2017. "Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle," Energy, Elsevier, vol. 140(P1), pages 979-987.
- Piadehrouhi, Forough & Ghorbani, Bahram & Miansari, Mehdi & Mehrpooya, Mehdi, 2019. "Development of a new integrated structure for simultaneous generation of power and liquid carbon dioxide using solar dish collectors," Energy, Elsevier, vol. 179(C), pages 938-959.
- Chen, Xiaohang & Wang, Yuan & Zhao, Yingru & Zhou, Yinghui, 2016. "A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system," Energy, Elsevier, vol. 101(C), pages 359-365.
- Zou, Wen-Jiang & Shen, Kun-Yang & Jung, Seunghun & Kim, Young-Bae, 2021. "Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system," Energy, Elsevier, vol. 229(C).
- Liang, Tao & Chen, Jingyi & Chen, Xiaohang & Su, Shanhe & Chen, Jincan, 2022. "Trade-off between the near-field heat transfer and the space charge effect in graphene-anode thermionic energy converters," Energy, Elsevier, vol. 260(C).
- Xiao, Gang & Zheng, Guanghua & Qiu, Min & Li, Qiang & Li, Dongsheng & Ni, Mingjiang, 2017. "Thermionic energy conversion for concentrating solar power," Applied Energy, Elsevier, vol. 208(C), pages 1318-1342.
- Ma, Ting & Qu, Zuoming & Yu, Xingfei & Lu, Xing & Chen, Yitung & Wang, Qiuwang, 2019. "Numerical study and optimization of thermoelectric-hydraulic performance of a novel thermoelectric generator integrated recuperator," Energy, Elsevier, vol. 174(C), pages 1176-1187.
- Liang, Qi & He, Ya-Ling & Ren, Qinlong & Zhou, Yi-Peng & Xie, Tao, 2018. "A detailed study on phonon transport in thin silicon membranes with phononic crystal nanostructures," Applied Energy, Elsevier, vol. 227(C), pages 731-741.
- Chen, Siyu & Xue, Yejian & Li, Jianming & Zhang, Houcheng & Zhou, Lihua & Li, Yangyang, 2023. "Efficient and geometry-matching two-stage annular thermoelectric generator for tubular solid oxide fuel cell waste heat recovery," Energy, Elsevier, vol. 285(C).
- Shabani, Adib & Mehrpooya, Mehdi & Pazoki, Maryam, 2023. "Modelling and analysis of a novel production process of high-pressure hydrogen with CO2 separation using electrochemical compressor and LFR solar collector," Renewable Energy, Elsevier, vol. 210(C), pages 776-799.
- Kwan, Trevor Hocksun & Katsushi, Fujii & Shen, Yongting & Yin, Shunan & Zhang, Yongchao & Kase, Kiwamu & Yao, Qinghe, 2020. "Comprehensive review of integrating fuel cells to other energy systems for enhanced performance and enabling polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
- Han, Yuan & Lai, Cong & Li, Jiarui & Zhang, Zhufeng & Zhang, Houcheng & Hou, Shujin & Wang, Fu & Zhao, Jiapei & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Elastocaloric cooler for waste heat recovery from proton exchange membrane fuel cells," Energy, Elsevier, vol. 238(PA).
- Wu, Sijie & Zhang, Houcheng & Ni, Meng, 2016. "Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 112(C), pages 520-527.
- Zhang, Houcheng & Xu, Haoran & Chen, Bin & Dong, Feifei & Ni, Meng, 2017. "Two-stage thermoelectric generators for waste heat recovery from solid oxide fuel cells," Energy, Elsevier, vol. 132(C), pages 280-288.
- Houcheng Zhang & Jiatang Wang & Jiapei Zhao & Fu Wang & He Miao & Jinliang Yuan, 2019. "Performance Analysis of a Hybrid System Consisting of a Molten Carbonate Direct Carbon Fuel Cell and an Absorption Refrigerator," Energies, MDPI, vol. 12(3), pages 1-13, January.
More about this item
Keywords
Molten hydroxide direct carbon fuel cell; Vacuum thermionic energy converter; Hybrid system; Efficiency; Exergy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221003443. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.