Prediction of perovskite oxygen vacancies for oxygen electrocatalysis at different temperatures
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-53578-7
Download full text from publisher
References listed on IDEAS
- Hao-Bo Li & Nianpeng Lu & Qinghua Zhang & Yujia Wang & Deqiang Feng & Tianzhe Chen & Shuzhen Yang & Zheng Duan & Zhuolu Li & Yujun Shi & Weichao Wang & Wei-Hua Wang & Kui Jin & Hui Liu & Jing Ma & Lin, 2017. "Electric-field control of ferromagnetism through oxygen ion gating," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
- Shuo Zhai & Heping Xie & Peng Cui & Daqin Guan & Jian Wang & Siyuan Zhao & Bin Chen & Yufei Song & Zongping Shao & Meng Ni, 2022. "A combined ionic Lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells," Nature Energy, Nature, vol. 7(9), pages 866-875, September.
- Matteo Rini & Ra'anan Tobey & Nicky Dean & Jiro Itatani & Yasuhide Tomioka & Yoshinori Tokura & Robert W. Schoenlein & Andrea Cavalleri, 2007. "Control of the electronic phase of a manganite by mode-selective vibrational excitation," Nature, Nature, vol. 449(7158), pages 72-74, September.
- Yuan Zhang & Bin Chen & Daqin Guan & Meigui Xu & Ran Ran & Meng Ni & Wei Zhou & Ryan O’Hayre & Zongping Shao, 2021. "Thermal-expansion offset for high-performance fuel cell cathodes," Nature, Nature, vol. 591(7849), pages 246-251, March.
- Miao Zhong & Kevin Tran & Yimeng Min & Chuanhao Wang & Ziyun Wang & Cao-Thang Dinh & Phil De Luna & Zongqian Yu & Armin Sedighian Rasouli & Peter Brodersen & Song Sun & Oleksandr Voznyy & Chih-Shan Ta, 2020. "Accelerated discovery of CO2 electrocatalysts using active machine learning," Nature, Nature, vol. 581(7807), pages 178-183, May.
- Zongping Shao & Sossina M. Haile, 2004. "A high-performance cathode for the next generation of solid-oxide fuel cells," Nature, Nature, vol. 431(7005), pages 170-173, September.
- Chen Xia & Youquan Mi & Baoyuan Wang & Bin Lin & Gang Chen & Bin Zhu, 2019. "Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
- Mengran Li & Mingwen Zhao & Feng Li & Wei Zhou & Vanessa K. Peterson & Xiaoyong Xu & Zongping Shao & Ian Gentle & Zhonghua Zhu, 2017. "A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
- Zhen-Feng Huang & Jiajia Song & Yonghua Du & Shibo Xi & Shuo Dou & Jean Marie Vianney Nsanzimana & Cheng Wang & Zhichuan J. Xu & Xin Wang, 2019. "Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts," Nature Energy, Nature, vol. 4(4), pages 329-338, April.
- Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
- Yu Chen & Ben deGlee & Yu Tang & Ziyun Wang & Bote Zhao & Yuechang Wei & Lei Zhang & Seonyoung Yoo & Kai Pei & Jun Hyuk Kim & Yong Ding & P. Hu & Franklin Feng Tao & Meilin Liu, 2018. "A robust fuel cell operated on nearly dry methane at 500 °C enabled by synergistic thermal catalysis and electrocatalysis," Nature Energy, Nature, vol. 3(12), pages 1042-1050, December.
- J. Tyler Mefford & Xi Rong & Artem M. Abakumov & William G. Hardin & Sheng Dai & Alexie M. Kolpak & Keith P. Johnston & Keith J. Stevenson, 2016. "Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts," Nature Communications, Nature, vol. 7(1), pages 1-11, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vinoth Kumar, R. & Khandale, A.P., 2022. "A review on recent progress and selection of cobalt-based cathode materials for low temperature-solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Zhao, Wenjuan & Lin, Bin & Wang, Hao & Wang, Faze & Asghar, Muhammad Imran & Wang, Jun & Zhu, Bin & Lund, Peter, 2024. "A half-metallic heterostructure fuel cell with high performance," Renewable Energy, Elsevier, vol. 232(C).
- Shah, M.A.K. Yousaf & Lu, Yuzheng & Mushtaq, Naveed & Yousaf, Muhammad & Akbar, Nabeela & Xia, Chen & Yun, Sining & Zhu, Bin, 2023. "Semiconductor-membrane fuel cell (SMFC) for renewable energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
- Pengcheng Ye & Keqing Fang & Haiyan Wang & Yahao Wang & Hao Huang & Chenbin Mo & Jiqiang Ning & Yong Hu, 2024. "Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Zuyun He & Jun Zhang & Zhiheng Gong & Hang Lei & Deng Zhou & Nian Zhang & Wenjie Mai & Shijun Zhao & Yan Chen, 2022. "Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Kai Pei & Yucun Zhou & Kang Xu & Hua Zhang & Yong Ding & Bote Zhao & Wei Yuan & Kotaro Sasaki & YongMan Choi & Yu Chen & Meilin Liu, 2022. "Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Chang Jiang & Hongyuan He & Hongquan Guo & Xiaoxin Zhang & Qingyang Han & Yanhong Weng & Xianzhu Fu & Yinlong Zhu & Ning Yan & Xin Tu & Yifei Sun, 2024. "Transfer learning guided discovery of efficient perovskite oxide for alkaline water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Mohsen Fallah Vostakola & Bahman Amini Horri, 2021. "Progress in Material Development for Low-Temperature Solid Oxide Fuel Cells: A Review," Energies, MDPI, vol. 14(5), pages 1-53, February.
- Kei Saito & Masatomo Yashima, 2023. "High proton conductivity within the ‘Norby gap’ by stabilizing a perovskite with disordered intrinsic oxygen vacancies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
- Panlong Zhai & Chen Wang & Yuanyuan Zhao & Yanxue Zhang & Junfeng Gao & Licheng Sun & Jungang Hou, 2023. "Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Cheng Du & Joel P. Mills & Asfaw G. Yohannes & Wei Wei & Lei Wang & Siyan Lu & Jian-Xiang Lian & Maoyu Wang & Tao Guo & Xiyang Wang & Hua Zhou & Cheng-Jun Sun & John Z. Wen & Brian Kendall & Martin Co, 2023. "Cascade electrocatalysis via AgCu single-atom alloy and Ag nanoparticles in CO2 electroreduction toward multicarbon products," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
- Zhang, Xin & Li, Jingwen & Xiong, Yi & Ang, Yee Sin, 2022. "Efficient harvesting of low-grade waste heat from proton exchange membrane fuel cells via thermoradiative power devices," Energy, Elsevier, vol. 258(C).
- Lu, Guolong & Fan, Wenxuan & Lu, Dafeng & Zhao, Taotao & Wu, Qianqian & Liu, Mingxin & Liu, Zhenning, 2024. "Lung-inspired hybrid flow field to enhance PEMFC performance: A case of dual optimization by response surface and artificial intelligence," Applied Energy, Elsevier, vol. 355(C).
- Yunjie Yang & Minli Bai & Laisuo Su & Jizu Lv & Chengzhi Hu & Linsong Gao & Yang Li & Yubai Li & Yongchen Song, 2022. "One-Dimensional Numerical Simulation of Pt-Co Alloy Catalyst Aging for Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
- Haoyin Zhong & Qi Zhang & Junchen Yu & Xin Zhang & Chao Wu & Hang An & Yifan Ma & Hao Wang & Jun Zhang & Yong-Wei Zhang & Caozheng Diao & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin Xue, 2023. "Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
- Lv, Xiuqing & Chen, Huili & Zhou, Wei & Li, Si-Dian & Cheng, Fangqin & Shao, Zongping, 2022. "SrCo0.4Fe0.4Zr0.1Y0.1O3-δ, A new CO2 tolerant cathode for proton-conducting solid oxide fuel cells," Renewable Energy, Elsevier, vol. 185(C), pages 8-16.
- Venkatesan, Suriya & Mitzel, Jens & Wegner, Karsten & Costa, Remi & Gazdzicki, Pawel & Friedrich, Kaspar Andreas, 2022. "Nanomaterials and films for polymer electrolyte membrane fuel cells and solid oxide cells by flame spray pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53578-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.