Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.123178
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zahid, Taimoor & Xu, Kun & Li, Weimin & Li, Chenming & Li, Hongzhe, 2018. "State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles," Energy, Elsevier, vol. 162(C), pages 871-882.
- Ouyang, Tiancheng & Xu, Peihang & Chen, Jingxian & Su, Zixiang & Huang, Guicong & Chen, Nan, 2021. "A novel state of charge estimation method for lithium-ion batteries based on bias compensation," Energy, Elsevier, vol. 226(C).
- Bian, Chong & He, Huoliang & Yang, Shunkun, 2020. "Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 191(C).
- Li, Mingheng, 2017. "Li-ion dynamics and state of charge estimation," Renewable Energy, Elsevier, vol. 100(C), pages 44-52.
- Jiang, Cong & Wang, Shunli & Wu, Bin & Fernandez, Carlos & Xiong, Xin & Coffie-Ken, James, 2021. "A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter," Energy, Elsevier, vol. 219(C).
- Zheng, Fangdan & Xing, Yinjiao & Jiang, Jiuchun & Sun, Bingxiang & Kim, Jonghoon & Pecht, Michael, 2016. "Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 183(C), pages 513-525.
- Zhengxin, Jiang & Qin, Shi & Yujiang, Wei & Hanlin, Wei & Bingzhao, Gao & Lin, He, 2021. "An Immune Genetic Extended Kalman Particle Filter approach on state of charge estimation for lithium-ion battery," Energy, Elsevier, vol. 230(C).
- Zheng, Linfeng & Zhu, Jianguo & Wang, Guoxiu & Lu, Dylan Dah-Chuan & He, Tingting, 2018. "Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter," Energy, Elsevier, vol. 158(C), pages 1028-1037.
- Ning, Bo & Cao, Binggang & Wang, Bin & Zou, Zhongyue, 2018. "Adaptive sliding mode observers for lithium-ion battery state estimation based on parameters identified online," Energy, Elsevier, vol. 153(C), pages 732-742.
- Zheng Chen & Xiaoyu Li & Jiangwei Shen & Wensheng Yan & Renxin Xiao, 2016. "A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-15, September.
- Xia, Bizhong & Cui, Deyu & Sun, Zhen & Lao, Zizhou & Zhang, Ruifeng & Wang, Wei & Sun, Wei & Lai, Yongzhi & Wang, Mingwang, 2018. "State of charge estimation of lithium-ion batteries using optimized Levenberg-Marquardt wavelet neural network," Energy, Elsevier, vol. 153(C), pages 694-705.
- Zheng, Linfeng & Zhu, Jianguo & Lu, Dylan Dah-Chuan & Wang, Guoxiu & He, Tingting, 2018. "Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries," Energy, Elsevier, vol. 150(C), pages 759-769.
- Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2017. "A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique," Energy, Elsevier, vol. 141(C), pages 1402-1415.
- Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
- Deng, Zhongwei & Hu, Xiaosong & Lin, Xianke & Che, Yunhong & Xu, Le & Guo, Wenchao, 2020. "Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression," Energy, Elsevier, vol. 205(C).
- Feng, Xiong & Chen, Junxiong & Zhang, Zhongwei & Miao, Shuwen & Zhu, Qiao, 2021. "State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network," Energy, Elsevier, vol. 236(C).
- Yang, Fangfang & Li, Weihua & Li, Chuan & Miao, Qiang, 2019. "State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network," Energy, Elsevier, vol. 175(C), pages 66-75.
- Yang, Xiaolong & Chen, Yongji & Li, Bin & Luo, Dong, 2020. "Battery states online estimation based on exponential decay particle swarm optimization and proportional-integral observer with a hybrid battery model," Energy, Elsevier, vol. 191(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Huang, Haichi & Bian, Chong & Wu, Mengdan & An, Dong & Yang, Shunkun, 2024. "A novel integrated SOC–SOH estimation framework for whole-life-cycle lithium-ion batteries," Energy, Elsevier, vol. 288(C).
- Tian, Zhirui & Wang, Jiyang, 2022. "Variable frequency wind speed trend prediction system based on combined neural network and improved multi-objective optimization algorithm," Energy, Elsevier, vol. 254(PA).
- Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
- Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
- Zhang, Kai & Bai, Dongxin & Li, Yong & Song, Ke & Zheng, Bailin & Yang, Fuqian, 2024. "Robust state-of-charge estimator for lithium-ion batteries enabled by a physics-driven dual-stage attention mechanism," Applied Energy, Elsevier, vol. 359(C).
- Siyi Tao & Bo Jiang & Xuezhe Wei & Haifeng Dai, 2023. "A Systematic and Comparative Study of Distinct Recurrent Neural Networks for Lithium-Ion Battery State-of-Charge Estimation in Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-17, February.
- Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
- Donghun Wang & Jihwan Hwang & Jonghyun Lee & Minchan Kim & Insoo Lee, 2023. "Temperature-Based State-of-Charge Estimation Using Neural Networks, Gradient Boosting Machine and a Jetson Nano Device for Batteries," Energies, MDPI, vol. 16(6), pages 1-17, March.
- Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
- Molla Shahadat Hossain Lipu & Tahia F. Karim & Shaheer Ansari & Md. Sazal Miah & Md. Siddikur Rahman & Sheikh T. Meraj & Rajvikram Madurai Elavarasan & Raghavendra Rajan Vijayaraghavan, 2022. "Intelligent SOX Estimation for Automotive Battery Management Systems: State-of-the-Art Deep Learning Approaches, Open Issues, and Future Research Opportunities," Energies, MDPI, vol. 16(1), pages 1-31, December.
- Korkmaz, Mehmet, 2024. "A novel approach for improving the performance of deep learning-based state of charge estimation of lithium-ion batteries: Choosy SoC Estimator (ChoSoCE)," Energy, Elsevier, vol. 294(C).
- He, Jiabei & Wu, Lifeng, 2023. "Cross-conditions capacity estimation of lithium-ion battery with constrained adversarial domain adaptation," Energy, Elsevier, vol. 277(C).
- Li, Jiangkuan & Lin, Meng & Li, Yankai & Wang, Xu, 2022. "Transfer learning network for nuclear power plant fault diagnosis with unlabeled data under varying operating conditions," Energy, Elsevier, vol. 254(PB).
- Lee, Seonho & Kim, Jiwon & Byun, Jaewon & Joo, Junghee & Lee, Yoonjae & Kim, Taehyun & Hwangbo, Soonho & Han, Jeehoon & Kim, Sung-Kon & Lee, Jechan, 2023. "Environmentally-viable utilization of chicken litter as energy recovery and electrode production: A machine learning approach," Applied Energy, Elsevier, vol. 350(C).
- Yan, Jianhai & Ye, Zhi-Sheng & He, Shuguang & He, Zhen, 2024. "A feature disentanglement and unsupervised domain adaptation of remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Wang, Fujin & Zhao, Zhibin & Zhai, Zhi & Guo, Yanjie & Xi, Huan & Wang, Shibin & Chen, Xuefeng, 2023. "Feature disentanglement and tendency retainment with domain adaptation for Lithium-ion battery capacity estimation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ma, Wentao & Guo, Peng & Wang, Xiaofei & Zhang, Zhiyu & Peng, Siyuan & Chen, Badong, 2022. "Robust state of charge estimation for Li-ion batteries based on cubature kalman filter with generalized maximum correntropy criterion," Energy, Elsevier, vol. 260(C).
- Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
- Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
- Ren, Xiaoqing & Liu, Shulin & Yu, Xiaodong & Dong, Xia, 2021. "A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM," Energy, Elsevier, vol. 234(C).
- He, Lin & Wang, Yangyang & Wei, Yujiang & Wang, Mingwei & Hu, Xiaosong & Shi, Qin, 2022. "An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery," Energy, Elsevier, vol. 244(PA).
- Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
- Yang, Kuo & Tang, Yugui & Zhang, Shujing & Zhang, Zhen, 2022. "A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism," Energy, Elsevier, vol. 244(PB).
- Zhang, Zhendong & Kong, Xiangdong & Zheng, Yuejiu & Zhou, Long & Lai, Xin, 2019. "Real-time diagnosis of micro-short circuit for Li-ion batteries utilizing low-pass filters," Energy, Elsevier, vol. 166(C), pages 1013-1024.
- Shu, Xing & Li, Guang & Shen, Jiangwei & Lei, Zhenzhen & Chen, Zheng & Liu, Yonggang, 2020. "An adaptive multi-state estimation algorithm for lithium-ion batteries incorporating temperature compensation," Energy, Elsevier, vol. 207(C).
- Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
- Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
- Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
- Jiang, Bo & Tao, Siyi & Wang, Xueyuan & Zhu, Jiangong & Wei, Xuezhe & Dai, Haifeng, 2023. "Mechanics-based state of charge estimation for lithium-ion pouch battery using deep learning technique," Energy, Elsevier, vol. 278(PA).
- Lai, Xin & Huang, Yunfeng & Gu, Huanghui & Han, Xuebing & Feng, Xuning & Dai, Haifeng & Zheng, Yuejiu & Ouyang, Minggao, 2022. "Remaining discharge energy estimation for lithium-ion batteries based on future load prediction considering temperature and ageing effects," Energy, Elsevier, vol. 238(PA).
- Yang, Xiaolong & Chen, Yongji & Li, Bin & Luo, Dong, 2020. "Battery states online estimation based on exponential decay particle swarm optimization and proportional-integral observer with a hybrid battery model," Energy, Elsevier, vol. 191(C).
- Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Li, Huan & Xu, Wenhua & Fernandez, Carlos, 2022. "An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 260(C).
- Zheng Chen & Jiapeng Xiao & Xing Shu & Shiquan Shen & Jiangwei Shen & Yonggang Liu, 2020. "Model-Based Adaptive Joint Estimation of the State of Charge and Capacity for Lithium–Ion Batteries in Their Entire Lifespan," Energies, MDPI, vol. 13(6), pages 1-15, March.
- Wang, Chao & Zhang, Xin & Yun, Xiang & Meng, Xiangfei & Fan, Xingming, 2023. "Robust state-of-charge estimation method for lithium-ion batteries based on the fusion of time series relevance vector machine and filter algorithm," Energy, Elsevier, vol. 285(C).
- Zhu, Rui & Duan, Bin & Zhang, Junming & Zhang, Qi & Zhang, Chenghui, 2020. "Co-estimation of model parameters and state-of-charge for lithium-ion batteries with recursive restricted total least squares and unscented Kalman filter," Applied Energy, Elsevier, vol. 277(C).
- Guo, Yuanjun & Yang, Zhile & Liu, Kailong & Zhang, Yanhui & Feng, Wei, 2021. "A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system," Energy, Elsevier, vol. 219(C).
More about this item
Keywords
State-of-charge (SOC); Open-source battery datasets; Deep learning; Gated recurrent unit (GRU); Source domain model; Transfer learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000810. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.