IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224018966.html
   My bibliography  Save this article

MetaWave Learner: Predicting wave farms power output using effective meta-learner deep gradient boosting model: A case study from Australian coasts

Author

Listed:
  • Neshat, Mehdi
  • Sergiienko, Nataliia Y.
  • Rafiee, Ashkan
  • Mirjalili, Seyedali
  • Gandomi, Amir H.
  • Boland, John

Abstract

Precise prediction of wave energy is indispensable and holds immense promise as ocean waves have a power capacity of 30–40 kW/m along the coast. Utilising this energy source does not generate harmful emissions, making it a superior substitute for fossil fuel-based energy. The computational expense associated with simulating and computing intricate hydrodynamic interactions in wave farms restricts optimisation methods to a few thousand evaluations and makes a challenging situation for training in deep neural prediction models. To address this issue, we propose a new solution: a Meta-learner gradient boosting method that employs four multi-layer convolutional dense neural network surrogate models combined with an optimised extreme gradient boosting. In order to train and validate the predictive model, we used four wave farm datasets, including the absorbed power outputs and 2D coordinates of wave energy converters (WECs) located along the southern coast of Australia, Adelaide, Sydney, Perth and Tasmania. Furthermore, the capability of the transfer learning strategy is evaluated. The WECs used in this study are of the fully submerged three-tether converter type, similar to the CETO prototype. The effectiveness of the proposed approach is assessed by comparing it with 15 well-established and effective machine learning (ML) methods. The experimental findings indicate that the proposed model is competitive with other ML and deep learning approaches, exhibiting considerable accuracy of 88.8%, 90.0%, 90.3%, and 84.4% in Adelaide, Perth, Sydney and Tasmania and improved robustness in predicting wave farm power output.

Suggested Citation

  • Neshat, Mehdi & Sergiienko, Nataliia Y. & Rafiee, Ashkan & Mirjalili, Seyedali & Gandomi, Amir H. & Boland, John, 2024. "MetaWave Learner: Predicting wave farms power output using effective meta-learner deep gradient boosting model: A case study from Australian coasts," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018966
    DOI: 10.1016/j.energy.2024.132122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224018966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Jiabei & Wu, Lifeng, 2023. "Cross-conditions capacity estimation of lithium-ion battery with constrained adversarial domain adaptation," Energy, Elsevier, vol. 277(C).
    2. Lehmann, Marcus & Karimpour, Farid & Goudey, Clifford A. & Jacobson, Paul T. & Alam, Mohammad-Reza, 2017. "Ocean wave energy in the United States: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1300-1313.
    3. Mahdavi-Meymand, Amin & Sulisz, Wojciech, 2023. "Application of nested artificial neural network for the prediction of significant wave height," Renewable Energy, Elsevier, vol. 209(C), pages 157-168.
    4. Wang, Ya-Xiong & Chen, Zhenhang & Zhang, Wei, 2022. "Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning," Energy, Elsevier, vol. 244(PB).
    5. Yuan, Xiaohui & Tan, Qingxiong & Lei, Xiaohui & Yuan, Yanbin & Wu, Xiaotao, 2017. "Wind power prediction using hybrid autoregressive fractionally integrated moving average and least square support vector machine," Energy, Elsevier, vol. 129(C), pages 122-137.
    6. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Sankaran, Adarsh & Deo, Ravinesh C. & Xiao, Fuyuan & Zhu, Shuyu, 2021. "Advanced extreme learning machines vs. deep learning models for peak wave energy period forecasting: A case study in Queensland, Australia," Renewable Energy, Elsevier, vol. 177(C), pages 1031-1044.
    7. Zhang, Jincheng & Zhao, Xiaowei & Greaves, Deborah & Jin, Siya, 2023. "Modeling of a hinged-raft wave energy converter via deep operator learning and wave tank experiments," Applied Energy, Elsevier, vol. 341(C).
    8. Liu, Yang & Sun, Yongjun & Gao, Dian-ce & Tan, Jiaqi & Chen, Yuxin, 2024. "Stacked ensemble learning approach for PCM-based double-pipe latent heat thermal energy storage prediction towards flexible building energy," Energy, Elsevier, vol. 294(C).
    9. Li, Changzhi & Lin, Wei & Wu, Hangyu & Li, Yang & Zhu, Wenchao & Xie, Changjun & Gooi, Hoay Beng & Zhao, Bo & Zhang, Leiqi, 2023. "Performance degradation decomposition-ensemble prediction of PEMFC using CEEMDAN and dual data-driven model," Renewable Energy, Elsevier, vol. 215(C).
    10. Neshat, Mehdi & Nezhad, Meysam Majidi & Sergiienko, Nataliia Y. & Mirjalili, Seyedali & Piras, Giuseppe & Garcia, Davide Astiaso, 2022. "Wave power forecasting using an effective decomposition-based convolutional Bi-directional model with equilibrium Nelder-Mead optimiser," Energy, Elsevier, vol. 256(C).
    11. Sarkar, Dripta & Contal, Emile & Vayatis, Nicolas & Dias, Frederic, 2016. "Prediction and optimization of wave energy converter arrays using a machine learning approach," Renewable Energy, Elsevier, vol. 97(C), pages 504-517.
    12. Dong, Xiaochong & Sun, Yingyun & Dong, Lei & Li, Jian & Li, Yan & Di, Lei, 2023. "Transferable wind power probabilistic forecasting based on multi-domain adversarial networks," Energy, Elsevier, vol. 285(C).
    13. Zhang, Yachao & Le, Jian & Liao, Xiaobing & Zheng, Feng & Li, Yinghai, 2019. "A novel combination forecasting model for wind power integrating least square support vector machine, deep belief network, singular spectrum analysis and locality-sensitive hashing," Energy, Elsevier, vol. 168(C), pages 558-572.
    14. Li, Liang & Yuan, Zhiming & Gao, Yan, 2018. "Maximization of energy absorption for a wave energy converter using the deep machine learning," Energy, Elsevier, vol. 165(PA), pages 340-349.
    15. Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
    16. Zhao, Ying & Li, Liang & Lanteri, Stéphane & Viquerat, Jonathan, 2022. "Dynamic metasurface control using Deep Reinforcement Learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 377-395.
    17. Sergiienko, N.Y. & Cazzolato, B.S. & Ding, B. & Arjomandi, M., 2016. "An optimal arrangement of mooring lines for the three-tether submerged point-absorbing wave energy converter," Renewable Energy, Elsevier, vol. 93(C), pages 27-37.
    18. Marques Silva, Jorge & Vieira, Susana M. & Valério, Duarte & Henriques, João C.C., 2023. "Model predictive control based on air pressure forecasting of OWC wave power plants," Energy, Elsevier, vol. 284(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Hongjian & Qin, Hao & Su, Haowen & Wen, Zhixuan & Mu, Lin, 2024. "Environmental-Sensing and adaptive optimization of wave energy converter based on deep reinforcement learning and computational fluid dynamics," Energy, Elsevier, vol. 297(C).
    2. Gao, Ruobin & Li, Ruilin & Hu, Minghui & Suganthan, Ponnuthurai Nagaratnam & Yuen, Kum Fai, 2023. "Dynamic ensemble deep echo state network for significant wave height forecasting," Applied Energy, Elsevier, vol. 329(C).
    3. Abbas, Ahmed K. & Bashikh, Ali A. & Abbas, Hayder & Mohammed, Haider Q., 2019. "Intelligent decisions to stop or mitigate lost circulation based on machine learning," Energy, Elsevier, vol. 183(C), pages 1104-1113.
    4. Nathan Oaks Farrar & Mohd Hasan Ali & Dipankar Dasgupta, 2023. "Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, February.
    5. Wu, Han & Liang, Yan & Gao, Xiao-Zhi, 2023. "Left-right brain interaction inspired bionic deep network for forecasting significant wave height," Energy, Elsevier, vol. 278(PB).
    6. Chengcheng Gu & Hua Li, 2022. "Review on Deep Learning Research and Applications in Wind and Wave Energy," Energies, MDPI, vol. 15(4), pages 1-19, February.
    7. Fu, Wenlong & Zhang, Kai & Wang, Kai & Wen, Bin & Fang, Ping & Zou, Feng, 2021. "A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM," Renewable Energy, Elsevier, vol. 164(C), pages 211-229.
    8. Erfan Amini & Danial Golbaz & Fereidoun Amini & Meysam Majidi Nezhad & Mehdi Neshat & Davide Astiaso Garcia, 2020. "A Parametric Study of Wave Energy Converter Layouts in Real Wave Models," Energies, MDPI, vol. 13(22), pages 1-23, November.
    9. Mehdi Neshat & Nataliia Y. Sergiienko & Erfan Amini & Meysam Majidi Nezhad & Davide Astiaso Garcia & Bradley Alexander & Markus Wagner, 2020. "A New Bi-Level Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island, Mediterranean Sea," Energies, MDPI, vol. 13(20), pages 1-23, October.
    10. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    11. Seongho Ahn & Kevin A. Haas & Vincent S. Neary, 2020. "Dominant Wave Energy Systems and Conditional Wave Resource Characterization for Coastal Waters of the United States," Energies, MDPI, vol. 13(12), pages 1-26, June.
    12. Peerzada, Aaqib & Hanif, Sarmad & Tarekegne, Bethel & Baldwin, Diane & Bhattacharya, Saptarshi, 2024. "On the impact of tidal generation and energy storage integration in PV-rich electric distribution systems," Applied Energy, Elsevier, vol. 357(C).
    13. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    14. Jahangir, Mohammad Hossein & Hosseini, Seyed Sina & Mehrpooya, Mehdi, 2018. "A detailed theoretical modeling and parametric investigation of potential power in heaving buoys," Energy, Elsevier, vol. 154(C), pages 201-209.
    15. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    16. Zhang, Zhenquan & Qin, Jian & Zhang, Yuchen & Huang, Shuting & Liu, Yanjun & Xue, Gang, 2023. "Cooperative model predictive control for Wave Energy Converter arrays," Renewable Energy, Elsevier, vol. 219(P1).
    17. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H. & Chen, Mingjie & Nazari, Rouzbeh, 2024. "Advancements in optimizing wave energy converter geometry utilizing metaheuristic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    18. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
    19. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.