IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipas0360544221028528.html
   My bibliography  Save this article

Synthesis of graphene oxide nanoparticles and the influences of their usage as fuel additives on CI engine behaviors

Author

Listed:
  • Ağbulut, Ümit
  • Elibol, Erdem
  • Demirci, Tuna
  • Sarıdemir, Suat
  • Gürel, Ali Etem
  • Rajak, Upendra
  • Afzal, Asif
  • Verma, Tikendra Nath

Abstract

The present paper aims to investigate the synthesis of graphene oxide (GO) nanoparticles, and the comprehensive investigation of their use along with the waste cooking oil methyl ester (WCO) and diesel fuel blend on combustion, injection, performance, and emission characteristics of a diesel engine under varying engine loads from 3 to 12 Nm with the gaps of 3 Nm at a fixed speed of 2400 rpm. The test fuels named B0 (completely neat diesel fuel), B15 (85% diesel and 15% WCO), B15 + 100 ppm GO (B15 and 100 ppm GO), B15 + 500 ppm GO (B15 and 500 ppm GO), B15 + 1000 ppm GO (B15 and 1000 ppm GO). In the results, it is noticed that blending of biodiesel into conventional diesel fuel drops the brake thermal efficiency (BTE) by 2.67%, CO by 7.5%, HC emissions by 8.53%, and increases the brake specific fuel consumption (BSFC) by 5.54%, and NOx emissions by 3.37% compared to those of reference-fuel B0. However, nanoparticle-added test fuels exhibit a respectable enhancement in all performance and emission characteristics. With the addition of GO nanoparticles, BTE increases by 7.90%, and BSFC drops by 9.72% due to the improved energy content of test fuels. On the other hand, NOx is pulled back by 15.17% due to both superior surface to volume area ratio and thermal properties of GO nanoparticles. Moreover, GO nanoparticles act as the oxygen buffer, and catalyst the chemical reactions until the combustion process. Accordingly, GO ensures more complete combustion, and therefore reduces CO emission by 22.5% and HC emission by 30.23%. In the conclusion, the present paper declares that GO nanoparticles can give a satisfying solution to improve the worsened characteristics arising from biodiesel and diesel binary blends in CI engines.

Suggested Citation

  • Ağbulut, Ümit & Elibol, Erdem & Demirci, Tuna & Sarıdemir, Suat & Gürel, Ali Etem & Rajak, Upendra & Afzal, Asif & Verma, Tikendra Nath, 2022. "Synthesis of graphene oxide nanoparticles and the influences of their usage as fuel additives on CI engine behaviors," Energy, Elsevier, vol. 244(PA).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221028528
    DOI: 10.1016/j.energy.2021.122603
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221028528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122603?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Venu, Harish & Subramani, Lingesan & Raju, V. Dhana, 2019. "Emission reduction in a DI diesel engine using exhaust gas recirculation (EGR) of palm biodiesel blended with TiO2 nano additives," Renewable Energy, Elsevier, vol. 140(C), pages 245-263.
    2. Sayin, Cenk & Ilhan, Murat & Canakci, Mustafa & Gumus, Metin, 2009. "Effect of injection timing on the exhaust emissions of a diesel engine using diesel–methanol blends," Renewable Energy, Elsevier, vol. 34(5), pages 1261-1269.
    3. Hosseini, Seyyed Hassan & Taghizadeh-Alisaraei, Ahmad & Ghobadian, Barat & Abbaszadeh-Mayvan, Ahmad, 2017. "Performance and emission characteristics of a CI engine fuelled with carbon nanotubes and diesel-biodiesel blends," Renewable Energy, Elsevier, vol. 111(C), pages 201-213.
    4. Appavu, Prabhu & Ramanan M, Venkata & Venu, Harish, 2019. "Quaternary blends of diesel/biodiesel/vegetable oil/pentanol as a potential alternative feedstock for existing unmodified diesel engine: Performance, combustion and emission characteristics," Energy, Elsevier, vol. 186(C).
    5. Cheikh, Kezrane & Sary, Awad & Khaled, Loubar & Abdelkrim, Liazid & Mohand, Tazerout, 2016. "Experimental assessment of performance and emissions maps for biodiesel fueled compression ignition engine," Applied Energy, Elsevier, vol. 161(C), pages 320-329.
    6. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Ebadi, M.T. & Mamat, R. & Yusaf, T., 2020. "Performance and emission characteristics of a CI engine using graphene oxide (GO) nano-particles additives in biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 145(C), pages 458-465.
    7. Hosseini, Seyyed Hassan & Taghizadeh-Alisaraei, Ahmad & Ghobadian, Barat & Abbaszadeh-Mayvan, Ahmad, 2017. "Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine," Energy, Elsevier, vol. 124(C), pages 543-552.
    8. Karagoz, Mustafa & Uysal, Cuneyt & Agbulut, Umit & Saridemir, Suat, 2021. "Exergetic and exergoeconomic analyses of a CI engine fueled with diesel-biodiesel blends containing various metal-oxide nanoparticles," Energy, Elsevier, vol. 214(C).
    9. Vellaiyan, Suresh, 2020. "Enhancement in combustion, performance, and emission characteristics of a biodiesel-fueled diesel engine by using water emulsion and nanoadditive," Renewable Energy, Elsevier, vol. 145(C), pages 2108-2120.
    10. Yesilyurt, Murat Kadir, 2019. "The effects of the fuel injection pressure on the performance and emission characteristics of a diesel engine fuelled with waste cooking oil biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 132(C), pages 649-666.
    11. Sivakumar, Muthusamy & Shanmuga Sundaram, Nallathambi & Ramesh kumar, Ramasamy & Syed Thasthagir, Mohamed Hussain, 2018. "Effect of aluminium oxide nanoparticles blended pongamia methyl ester on performance, combustion and emission characteristics of diesel engine," Renewable Energy, Elsevier, vol. 116(PA), pages 518-526.
    12. Nagaraja, S. & Dsilva Winfred Rufuss, D. & Hossain, A.K., 2020. "Microscopic characteristics of biodiesel – Graphene oxide nanoparticle blends and their Utilisation in a compression ignition engine," Renewable Energy, Elsevier, vol. 160(C), pages 830-841.
    13. Ağbulut, Ümit & Sarıdemir, Suat & Rajak, Upendra & Polat, Fikret & Afzal, Asif & Verma, Tikendra Nath, 2021. "Effects of high-dosage copper oxide nanoparticles addition in diesel fuel on engine characteristics," Energy, Elsevier, vol. 229(C).
    14. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ganapathy Ponnambalam Arul & Selvam Thulasi & Pitchaipillai Kumar & Veeranan Arunprasad & Saboor Shaik & Mohamed Abbas & Parvathy Rajendran & Sher Afghan Khan & C. Ahamed Saleel, 2022. "Investigation of Dual–Pass Inclined Oscillating Bed Solar Dryer for Drying of Non-Parboiled Paddy Grains," Sustainability, MDPI, vol. 14(9), pages 1-13, May.
    2. Ağbulut, Ümit & Sarıdemir, Suat, 2024. "Synergistic effects of hybrid nanoparticles along with conventional fuel on engine performance, combustion, and environmental characteristics," Energy, Elsevier, vol. 292(C).
    3. Muninathan, K. & Venkata Ramanan, M. & Monish, N. & Baskar, G., 2024. "Economic analysis and TOPSIS approach to optimize the CI engine characteristics using span 80 mixed carbon nanotubes emulsified Sapindus trifoliatus (soapnut) biodiesel by artificial neural network pr," Applied Energy, Elsevier, vol. 355(C).
    4. Yakın, Ahmet & Behcet, Rasim & Solmaz, Hamit & Halis, Serdar, 2022. "Testing sodium borohydride as a fuel additive in internal combustion gasoline engine," Energy, Elsevier, vol. 254(PB).
    5. Ma, Shuaifei & Guo, Qi & Wei, Jiangjun & Yin, Zenghui & Zhuang, Yuan & Zhang, Yu & Dai, Qian & Qian, Yejian, 2024. "Analyzing the effect of carbon nanoparticles on the combustion performance and emissions of a DI diesel engine fueled with the diesel-methanol blend," Energy, Elsevier, vol. 300(C).
    6. Sathish, T. & Ağbulut, Ümit & Kumari, Vinod & Rathinasabapathi, G. & Karthikumar, K. & Rama Jyothi, N. & Ratna Kandavalli, Sumanth & Vijay Muni, T. & Saravanan, R., 2023. "Energy recovery from waste animal fats and detailed testing on combustion, performance, and emission analysis of IC engine fueled with their blends enriched with metal oxide nanoparticles," Energy, Elsevier, vol. 284(C).
    7. Du, Jinlong & Shen, Tianhao & Hu, Jianhang & Zhang, Fengxia & Yang, Shiliang & Liu, Huili & Wang, Hua, 2023. "Study on thermochemical conversion of triglyceride biomass catalyzed by biochar catalyst," Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ağbulut, Ümit & Polat, Fikret & Sarıdemir, Suat, 2021. "A comprehensive study on the influences of different types of nano-sized particles usage in diesel-bioethanol blends on combustion, performance, and environmental aspects," Energy, Elsevier, vol. 229(C).
    2. Rajak, Upendra & Ağbulut, Ümit & Veza, Ibham & Dasore, Abhishek & Sarıdemir, Suat & Verma, Tikendra Nath, 2022. "Numerical and experimental investigation of CI engine behaviours supported by zinc oxide nanomaterial along with diesel fuel," Energy, Elsevier, vol. 239(PE).
    3. Ağbulut, Ümit & Gürel, Ali Etem & Sarıdemir, Suat, 2021. "Experimental investigation and prediction of performance and emission responses of a CI engine fuelled with different metal-oxide based nanoparticles–diesel blends using different machine learning alg," Energy, Elsevier, vol. 215(PA).
    4. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    5. Sathiyamoorthi Ramalingam & G Sankaranarayanan & S Senthil & R.A Rohith & R Santosh Kumar, 2023. "Effect of Cerium oxide nanoparticles derived from biosynthesis of Azadirachta indica on stability and performance of a research CI engine powered by Diesel-Lemongrass oil blends," Energy & Environment, , vol. 34(4), pages 886-908, June.
    6. Hosseinzadeh-Bandbafha, Homa & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Orooji, Yasin & Shahbeik, Hossein & Mahian, Omid & Karimi-Maleh, Hassan & Kalam, Md Abul & Salehi Jouzani, Gholamreza & M, 2023. "Applications of nanotechnology in biodiesel combustion and post-combustion stages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    7. Charu Vikram Srivatsa & Shah Saud Alam & Bailey Spickler & Christopher Depcik, 2024. "Effect of Exhaust Gas Recirculation on Combustion Characteristics of Ultra-Low-Sulfur Diesel in Conventional and PPCI Regimes for a High-Compression-Ratio Engine," Energies, MDPI, vol. 17(16), pages 1-26, August.
    8. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    9. El-Seesy, Ahmed I. & Hassan, Hamdy & Ookawara, S., 2018. "Effects of graphene nanoplatelet addition to jatropha Biodiesel–Diesel mixture on the performance and emission characteristics of a diesel engine," Energy, Elsevier, vol. 147(C), pages 1129-1152.
    10. Ettefaghi, Ehsanollah & Rashidi, Alimorad & Ghobadian, Barat & Najafi, G. & Ghasemy, Ebrahim & Khoshtaghaza, Mohammad Hadi & Delavarizadeh, Saman & Mazlan, Mohamed, 2021. "Bio-nano emulsion fuel based on graphene quantum dot nanoparticles for reducing energy consumption and pollutants emission," Energy, Elsevier, vol. 218(C).
    11. Liang, Zhirong & Yu, Zhenhong & Liu, Haoye & Chen, Longfei & Huang, Xinyan, 2022. "Combustion and emission characteristics of a compression ignition engine burning a wide range of conventional hydrocarbon and alternative fuels," Energy, Elsevier, vol. 250(C).
    12. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan, 2019. "Combined effect of influence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends," Energy, Elsevier, vol. 174(C), pages 386-406.
    13. Vellaiyan, Suresh, 2023. "Recent advancements in water emulsion fuel to explore efficient and cleaner production from various biodiesels: A retrospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    14. Venu, Harish & Raju, V. Dhana & Lingesan, S. & Elahi M Soudagar, Manzoore, 2021. "Influence of Al2O3nano additives in ternary fuel (diesel-biodiesel-ethanol) blends operated in a single cylinder diesel engine: Performance, combustion and emission characteristics," Energy, Elsevier, vol. 215(PB).
    15. Doğan, Battal & Çelik, Mehmet & Bayındırlı, Cihan & Erol, Derviş, 2023. "Exergy, exergoeconomic, and sustainability analyses of a diesel engine using biodiesel fuel blends containing nanoparticles," Energy, Elsevier, vol. 274(C).
    16. Ahmed Sule & Zulkarnain Abdul Latiff & Mohd Azman Abas & Ibham Veza & Manzoore Elahi M. Soudagar & Irianto Harny & Vorathin Epin, 2023. "Dual Effects of N-Butanol and Magnetite Nanoparticle to Biodiesel-Diesel Fuel Blends as Additives on Emission Pattern and Performance of a Diesel Engine with ANN Validation," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    17. Rai, Ranjeet Kumar & Sahoo, Rashmi Rekha, 2021. "Impact of different shape based hybrid nano additives in emulsion fuel for exergetic, energetic, and sustainability analysis of diesel engine," Energy, Elsevier, vol. 214(C).
    18. Ağbulut, Ümit & Sarıdemir, Suat & Rajak, Upendra & Polat, Fikret & Afzal, Asif & Verma, Tikendra Nath, 2021. "Effects of high-dosage copper oxide nanoparticles addition in diesel fuel on engine characteristics," Energy, Elsevier, vol. 229(C).
    19. Wu, Qibai & Xie, Xialin & Wang, Yaodong & Roskilly, Tony, 2018. "Effect of carbon coated aluminum nanoparticles as additive to biodiesel-diesel blends on performance and emission characteristics of diesel engine," Applied Energy, Elsevier, vol. 221(C), pages 597-604.
    20. Ganesha Thippeshnaik & Sajjal Basanna Prakash & Ajith Bintravalli Suresh & Manjunath Patel Gowdru Chandrashekarappa & Olusegun David Samuel & Oguzhan Der & Ali Ercetin, 2023. "Experimental Investigation of Compression Ignition Engine Combustion, Performance, and Emission Characteristics of Ternary Blends with Higher Alcohols (1-Heptanol and n -Octanol)," Energies, MDPI, vol. 16(18), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221028528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.