IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223026816.html
   My bibliography  Save this article

Energy recovery from waste animal fats and detailed testing on combustion, performance, and emission analysis of IC engine fueled with their blends enriched with metal oxide nanoparticles

Author

Listed:
  • Sathish, T.
  • Ağbulut, Ümit
  • Kumari, Vinod
  • Rathinasabapathi, G.
  • Karthikumar, K.
  • Rama Jyothi, N.
  • Ratna Kandavalli, Sumanth
  • Vijay Muni, T.
  • Saravanan, R.

Abstract

The interest in researching alternative fuels is vital due to the alarming levels of environmental hazards of petroleum fuels. Since biodiesel is biodegradable, renewable, and has lower emissions, it has emerged as an appropriate choice for further investigation. The biodiesel and diesel blends with nanoparticle additives also contribute to improving efficiency and reducing the engine's exhaust emissions. Accordingly, this research analyzed the engine combustion, performance, and emission characteristics using Sheep fat (SF) biofuel blended with diesel fuel. The transesterification process produced the SF biodiesel, and the Zinc oxide (ZnO) nanoparticles were added as additives to improve the engine behaviors. The Sheep fat (SF) biofuel of 20 % volumetrically blended with conventional diesel fuel of 80 % (B20). Results of in-cylinder pressure, HRR, and BTE were recorded at the higher value using B20+ZnO 100 ppm and B20+ZnO 50 ppm blend fuel and BSFC was lowered compared with the nanoparticles-free fuel blends at higher load. Furthermore, the carbon monoxide (CO), Hydrocarbons (HC), and smoke levels have significantly decreased for both the B20+ZnO 100 and B20+ZnO 50 blends. For the B20+ZnO 100 fuel, these levels have decreased by roughly 28 %, 41 %, and 22 %, respectively, while for the B20+ZnO 50 blend, they have decreased by 24 %, 38 %, and 14 % at higher engine load. On the other hand, UHC, NOX, and smoke reduction percentage by using B20+ZnO 100 blend fuel is about 54.5, 52.4, and 45.4 % were reduced in comparison to these of diesel fuel. Compared with other test fuels, B20+ZnO 100 and B20+ZnO 50 blends significantly improve all engine characteristics.

Suggested Citation

  • Sathish, T. & Ağbulut, Ümit & Kumari, Vinod & Rathinasabapathi, G. & Karthikumar, K. & Rama Jyothi, N. & Ratna Kandavalli, Sumanth & Vijay Muni, T. & Saravanan, R., 2023. "Energy recovery from waste animal fats and detailed testing on combustion, performance, and emission analysis of IC engine fueled with their blends enriched with metal oxide nanoparticles," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026816
    DOI: 10.1016/j.energy.2023.129287
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223026816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Qibai & Xie, Xialin & Wang, Yaodong & Roskilly, Tony, 2018. "Effect of carbon coated aluminum nanoparticles as additive to biodiesel-diesel blends on performance and emission characteristics of diesel engine," Applied Energy, Elsevier, vol. 221(C), pages 597-604.
    2. Hosseini, Seyyed Hassan & Taghizadeh-Alisaraei, Ahmad & Ghobadian, Barat & Abbaszadeh-Mayvan, Ahmad, 2017. "Performance and emission characteristics of a CI engine fuelled with carbon nanotubes and diesel-biodiesel blends," Renewable Energy, Elsevier, vol. 111(C), pages 201-213.
    3. EL-Seesy, Ahmed I. & He, Zhixia & Kosaka, Hidenori, 2021. "Combustion and emission characteristics of a common rail diesel engine run with n-heptanol-methyl oleate mixtures," Energy, Elsevier, vol. 214(C).
    4. Tse, H. & Leung, C.W. & Cheung, C.S., 2015. "Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends," Energy, Elsevier, vol. 83(C), pages 343-350.
    5. Erdoğan, Sinan & Balki, Mustafa Kemal & Aydın, Selman & Sayın, Cenk, 2020. "Performance, emission and combustion characteristic assessment of biodiesels derived from beef bone marrow in a diesel generator," Energy, Elsevier, vol. 207(C).
    6. Kumar, Shiva & Dinesha, P. & Bran, Ijas, 2017. "Influence of nanoparticles on the performance and emission characteristics of a biodiesel fuelled engine: An experimental analysis," Energy, Elsevier, vol. 140(P1), pages 98-105.
    7. Yesilyurt, Murat Kadir, 2019. "The effects of the fuel injection pressure on the performance and emission characteristics of a diesel engine fuelled with waste cooking oil biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 132(C), pages 649-666.
    8. Shaafi, T. & Velraj, R., 2015. "Influence of alumina nanoparticles, ethanol and isopropanol blend as additive with diesel–soybean biodiesel blend fuel: Combustion, engine performance and emissions," Renewable Energy, Elsevier, vol. 80(C), pages 655-663.
    9. Nirmala, N. & Dawn, S.S. & Harindra, C., 2020. "Analysis of performance and emission characteristics of Waste cooking oil and Chlorella variabilis MK039712.1 biodiesel blends in a single cylinder, four strokes diesel engine," Renewable Energy, Elsevier, vol. 147(P1), pages 284-292.
    10. Tan, Pi-qiang & Ruan, Shuai-shuai & Hu, Zhi-yuan & Lou, Di-ming & Li, Hu, 2014. "Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions," Applied Energy, Elsevier, vol. 113(C), pages 22-31.
    11. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    12. El-Seesy, Ahmed I. & Hassan, Hamdy & Ookawara, S., 2018. "Effects of graphene nanoplatelet addition to jatropha Biodiesel–Diesel mixture on the performance and emission characteristics of a diesel engine," Energy, Elsevier, vol. 147(C), pages 1129-1152.
    13. Fahd, M. Ebna Alam & Wenming, Yang & Lee, P.S. & Chou, S.K. & Yap, Christopher R., 2013. "Experimental investigation of the performance and emission characteristics of direct injection diesel engine by water emulsion diesel under varying engine load condition," Applied Energy, Elsevier, vol. 102(C), pages 1042-1049.
    14. Jayaprabakar, J. & Dawn, S.S. & Ranjan, A. & Priyadharsini, P. & George, R.J. & Sadaf, S. & Rajha, C. Rajeswara, 2019. "Process optimization for biodiesel production from sheep skin and its performance, emission and combustion characterization in CI engine," Energy, Elsevier, vol. 174(C), pages 54-68.
    15. Ağbulut, Ümit & Elibol, Erdem & Demirci, Tuna & Sarıdemir, Suat & Gürel, Ali Etem & Rajak, Upendra & Afzal, Asif & Verma, Tikendra Nath, 2022. "Synthesis of graphene oxide nanoparticles and the influences of their usage as fuel additives on CI engine behaviors," Energy, Elsevier, vol. 244(PA).
    16. Ooi, Jong Boon & Ismail, Harun Mohamed & Tan, Boon Thong & Wang, Xin, 2018. "Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine," Energy, Elsevier, vol. 161(C), pages 70-80.
    17. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. El-Shafay, A.S. & Ağbulut, Ümit & Attia, El-Awady & Touileb, Kamel Lounes & Gad, M.S., 2023. "Waste to energy: Production of poultry-based fat biodiesel and experimental assessment of its usability on engine behaviors," Energy, Elsevier, vol. 262(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ağbulut, Ümit & Sarıdemir, Suat, 2024. "Synergistic effects of hybrid nanoparticles along with conventional fuel on engine performance, combustion, and environmental characteristics," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nagaraja, S. & Dsilva Winfred Rufuss, D. & Hossain, A.K., 2020. "Microscopic characteristics of biodiesel – Graphene oxide nanoparticle blends and their Utilisation in a compression ignition engine," Renewable Energy, Elsevier, vol. 160(C), pages 830-841.
    2. Hosseinzadeh-Bandbafha, Homa & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Orooji, Yasin & Shahbeik, Hossein & Mahian, Omid & Karimi-Maleh, Hassan & Kalam, Md Abul & Salehi Jouzani, Gholamreza & M, 2023. "Applications of nanotechnology in biodiesel combustion and post-combustion stages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Wei, Jiangjun & He, Chengjun & Lv, Gang & Zhuang, Yuan & Qian, Yejian & Pan, Suozhu, 2021. "The combustion, performance and emissions investigation of a dual-fuel diesel engine using silicon dioxide nanoparticle additives to methanol," Energy, Elsevier, vol. 230(C).
    4. Sathiyamoorthi Ramalingam & G Sankaranarayanan & S Senthil & R.A Rohith & R Santosh Kumar, 2023. "Effect of Cerium oxide nanoparticles derived from biosynthesis of Azadirachta indica on stability and performance of a research CI engine powered by Diesel-Lemongrass oil blends," Energy & Environment, , vol. 34(4), pages 886-908, June.
    5. Kumar, Shiva & Dinesha, P. & Rosen, Marc A., 2019. "Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive," Energy, Elsevier, vol. 185(C), pages 1163-1173.
    6. Hosseini, Seyyed Hassan & Rastegari, Hajar & Aghbashlo, Mortaza & Hajiahmad, Ali & Hosseinzadeh-Bandbafha, Homa & Mohammadi, Pouya & Jamal Sisi, Abdollah & Khalife, Esmail & Lam, Su Shiung & Pan, Junt, 2022. "Effects of metal-organic framework nanoparticles on the combustion, performance, and emission characteristics of a diesel engine," Energy, Elsevier, vol. 260(C).
    7. Özer, Salih. & Demir, Usame & Koçyiğit, Serhat., 2023. "Effect of using borax decahydrate as nanomaterials additive diesel fuel on diesel engine performance and emissions," Energy, Elsevier, vol. 266(C).
    8. Ağbulut, Ümit & Polat, Fikret & Sarıdemir, Suat, 2021. "A comprehensive study on the influences of different types of nano-sized particles usage in diesel-bioethanol blends on combustion, performance, and environmental aspects," Energy, Elsevier, vol. 229(C).
    9. Saxena, Vishal & Kumar, Niraj & Saxena, Vinod Kumar, 2019. "Multi-objective optimization of modified nanofluid fuel blends at different TiO2 nanoparticle concentration in diesel engine: Experimental assessment and modeling," Applied Energy, Elsevier, vol. 248(C), pages 330-353.
    10. Jagtap, Sharad P. & Pawar, Anand N. & Lahane, Subhash, 2020. "Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis," Renewable Energy, Elsevier, vol. 155(C), pages 628-644.
    11. Charu Vikram Srivatsa & Shah Saud Alam & Bailey Spickler & Christopher Depcik, 2024. "Effect of Exhaust Gas Recirculation on Combustion Characteristics of Ultra-Low-Sulfur Diesel in Conventional and PPCI Regimes for a High-Compression-Ratio Engine," Energies, MDPI, vol. 17(16), pages 1-26, August.
    12. Abul Kalam Hossain & Abdul Hussain, 2019. "Impact of Nanoadditives on the Performance and Combustion Characteristics of Neat Jatropha Biodiesel," Energies, MDPI, vol. 12(5), pages 1-16, March.
    13. El-Seesy, Ahmed I. & Hassan, Hamdy & Ookawara, S., 2018. "Effects of graphene nanoplatelet addition to jatropha Biodiesel–Diesel mixture on the performance and emission characteristics of a diesel engine," Energy, Elsevier, vol. 147(C), pages 1129-1152.
    14. Ettefaghi, Ehsanollah & Rashidi, Alimorad & Ghobadian, Barat & Najafi, G. & Ghasemy, Ebrahim & Khoshtaghaza, Mohammad Hadi & Delavarizadeh, Saman & Mazlan, Mohamed, 2021. "Bio-nano emulsion fuel based on graphene quantum dot nanoparticles for reducing energy consumption and pollutants emission," Energy, Elsevier, vol. 218(C).
    15. Wei, L. & Cheung, C.S. & Ning, Z., 2017. "Influence of waste cooking oil biodiesel on combustion, unregulated gaseous emissions and particulate emissions of a direct-injection diesel engine," Energy, Elsevier, vol. 127(C), pages 175-185.
    16. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    17. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, R. & Ebadi, M.T. & Yusaf, Talal, 2018. "Novel environmentally friendly fuel: The effects of nanographene oxide additives on the performance and emission characteristics of diesel engines fuelled with Ailanthus altissima biodiesel," Renewable Energy, Elsevier, vol. 125(C), pages 283-294.
    18. Agarwal, Swati & Kumari, Sonu & Mudgal, Anurag & Khan, Suphiya, 2020. "Green synthesized nanoadditives in jojoba biodiesel-diesel blends: An improvement of engine performance and emission," Renewable Energy, Elsevier, vol. 147(P1), pages 1836-1844.
    19. Ağbulut, Ümit & Elibol, Erdem & Demirci, Tuna & Sarıdemir, Suat & Gürel, Ali Etem & Rajak, Upendra & Afzal, Asif & Verma, Tikendra Nath, 2022. "Synthesis of graphene oxide nanoparticles and the influences of their usage as fuel additives on CI engine behaviors," Energy, Elsevier, vol. 244(PA).
    20. Karagoz, Mustafa & Uysal, Cuneyt & Agbulut, Umit & Saridemir, Suat, 2021. "Exergetic and exergoeconomic analyses of a CI engine fueled with diesel-biodiesel blends containing various metal-oxide nanoparticles," Energy, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.