IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipes0360544221026736.html
   My bibliography  Save this article

Numerical and experimental investigation of CI engine behaviours supported by zinc oxide nanomaterial along with diesel fuel

Author

Listed:
  • Rajak, Upendra
  • Ağbulut, Ümit
  • Veza, Ibham
  • Dasore, Abhishek
  • Sarıdemir, Suat
  • Verma, Tikendra Nath

Abstract

Zinc oxide nano additives of 250 ppm, 500 ppm, and 1000 ppm were blended with diesel fuel. The prepared fuels which were designated as DF-250 ppm ZnO, DF-500 ppm ZnO, and DF - 1000 ppm ZnO were tested for engine characteristics along with diesel fuel (DF) in a standard bench-scale engine. All the tests were carried out at different speeds of the engine ranging between 2000 and 3000 rpm with unvarying engine load and advanced injection timing. The outcomes from these experiments exhibited higher brake thermal efficiency and cylinder pressure for fuels with ZnO nano additives than that of diesel fuel. The emission gas temperature and brake-specific fuel consumption were noticed to be lower for fuels blended with ZnO nano additive than those of diesel fuel. The level of SPM emissions also increased in compression ratio from CR = 15.5 to CR = 16.5, but starting from CR of 17.5, the SPM emissions for all the investigated fuels were relatively constant with a slight decrease at the maximum compression ratio. In addition, at all test conditions, NO and SO2 emissions from the engine tail pipe were higher with ZnO mixed diesel fuel.

Suggested Citation

  • Rajak, Upendra & Ağbulut, Ümit & Veza, Ibham & Dasore, Abhishek & Sarıdemir, Suat & Verma, Tikendra Nath, 2022. "Numerical and experimental investigation of CI engine behaviours supported by zinc oxide nanomaterial along with diesel fuel," Energy, Elsevier, vol. 239(PE).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221026736
    DOI: 10.1016/j.energy.2021.122424
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221026736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fayaz Hussain & Manzoore Elahi M. Soudagar & Asif Afzal & M.A. Mujtaba & I.M. Rizwanul Fattah & Bharat Naik & Mohammed Huzaifa Mulla & Irfan Anjum Badruddin & T. M. Yunus Khan & Vallapudi Dhana Raju &, 2020. "Enhancement in Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Ce-ZnO Nanoparticle Additive Added to Soybean Biodiesel Blends," Energies, MDPI, vol. 13(17), pages 1-20, September.
    2. Hosseini, Seyyed Hassan & Taghizadeh-Alisaraei, Ahmad & Ghobadian, Barat & Abbaszadeh-Mayvan, Ahmad, 2017. "Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine," Energy, Elsevier, vol. 124(C), pages 543-552.
    3. Raju, V. Dhana & Venu, Harish & Subramani, Lingesan & Kishore, P.S. & Prasanna, P.L. & Kumar, D. Vinay, 2020. "An experimental assessment of prospective oxygenated additives on the diverse characteristics of diesel engine powered with waste tamarind biodiesel," Energy, Elsevier, vol. 203(C).
    4. Hosseini, Seyyed Hassan & Taghizadeh-Alisaraei, Ahmad & Ghobadian, Barat & Abbaszadeh-Mayvan, Ahmad, 2017. "Performance and emission characteristics of a CI engine fuelled with carbon nanotubes and diesel-biodiesel blends," Renewable Energy, Elsevier, vol. 111(C), pages 201-213.
    5. Ağbulut, Ümit & Sarıdemir, Suat & Rajak, Upendra & Polat, Fikret & Afzal, Asif & Verma, Tikendra Nath, 2021. "Effects of high-dosage copper oxide nanoparticles addition in diesel fuel on engine characteristics," Energy, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. G. M. B. Mustayen & M. G. Rasul & Xiaolin Wang & M. M. K. Bhuiya & Michael Negnevitsky & James Hamilton, 2022. "Theoretical and Experimental Analysis of Engine Performance and Emissions Fuelled with Jojoba Biodiesel," Energies, MDPI, vol. 15(17), pages 1-22, August.
    2. Mohan, Revu Krishn & Sarojini, Jajimoggala & Rajak, Upendra & Verma, Tikendra Nath & Ağbulut, Ümit, 2023. "Alternative fuel production from waste plastics and their usability in light duty diesel engine: Combustion, energy, and environmental analysis," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ağbulut, Ümit & Elibol, Erdem & Demirci, Tuna & Sarıdemir, Suat & Gürel, Ali Etem & Rajak, Upendra & Afzal, Asif & Verma, Tikendra Nath, 2022. "Synthesis of graphene oxide nanoparticles and the influences of their usage as fuel additives on CI engine behaviors," Energy, Elsevier, vol. 244(PA).
    2. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    3. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & Nagaraj R. Banapurmath & Muhammad A. Kalam & C. Ahamed Saleel, 2022. "Effect of Injection Parameters on the Performance of Compression Ignition Engine Powered with Jamun Seed and Cashew Nutshell B20 Biodiesel Blends," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    4. Sathiyamoorthi Ramalingam & G Sankaranarayanan & S Senthil & R.A Rohith & R Santosh Kumar, 2023. "Effect of Cerium oxide nanoparticles derived from biosynthesis of Azadirachta indica on stability and performance of a research CI engine powered by Diesel-Lemongrass oil blends," Energy & Environment, , vol. 34(4), pages 886-908, June.
    5. Özer, Salih. & Demir, Usame & Koçyiğit, Serhat., 2023. "Effect of using borax decahydrate as nanomaterials additive diesel fuel on diesel engine performance and emissions," Energy, Elsevier, vol. 266(C).
    6. Ağbulut, Ümit & Polat, Fikret & Sarıdemir, Suat, 2021. "A comprehensive study on the influences of different types of nano-sized particles usage in diesel-bioethanol blends on combustion, performance, and environmental aspects," Energy, Elsevier, vol. 229(C).
    7. Aghbashlo, Mortaza & Tabatabaei, Meisam & Khalife, Esmail & Roodbar Shojaei, Taha & Dadak, Ali, 2018. "Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide," Energy, Elsevier, vol. 149(C), pages 967-978.
    8. Wu, Qibai & Xie, Xialin & Wang, Yaodong & Roskilly, Tony, 2018. "Effect of carbon coated aluminum nanoparticles as additive to biodiesel-diesel blends on performance and emission characteristics of diesel engine," Applied Energy, Elsevier, vol. 221(C), pages 597-604.
    9. Hosseinzadeh-Bandbafha, Homa & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Orooji, Yasin & Shahbeik, Hossein & Mahian, Omid & Karimi-Maleh, Hassan & Kalam, Md Abul & Salehi Jouzani, Gholamreza & M, 2023. "Applications of nanotechnology in biodiesel combustion and post-combustion stages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    10. Hosseini, Seyyed Hassan & Taghizadeh-Alisaraei, Ahmad & Ghobadian, Barat & Abbaszadeh-Mayvan, Ahmad, 2020. "Artificial neural network modeling of performance, emission, and vibration of a CI engine using alumina nano-catalyst added to diesel-biodiesel blends," Renewable Energy, Elsevier, vol. 149(C), pages 951-961.
    11. Muhammad Usman & Haris Hussain & Fahid Riaz & Muneeb Irshad & Rehmat Bashir & Muhammad Haris Shah & Adeel Ahmad Zafar & Usman Bashir & M. A. Kalam & M. A. Mujtaba & Manzoore Elahi M. Soudagar, 2021. "Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    12. Gavaskar, T. & Ramanan M, Venkata & Arun, K. & Arivazhagan, S., 2023. "The combined effect of green synthesized nitrogen-doped carbon quantum dots blended jackfruit seed biodiesel and acetylene gas tested on the dual fuel engine," Energy, Elsevier, vol. 275(C).
    13. El-Seesy, Ahmed I. & Hassan, Hamdy & Ookawara, S., 2018. "Effects of graphene nanoplatelet addition to jatropha Biodiesel–Diesel mixture on the performance and emission characteristics of a diesel engine," Energy, Elsevier, vol. 147(C), pages 1129-1152.
    14. Luqman Razzaq & Shahid Imran & Zahid Anwar & Muhammad Farooq & Muhammad Mujtaba Abbas & Haris Mehmood Khan & Tahir Asif & Muhammad Amjad & Manzoore Elahi M. Soudagar & Nabeel Shaukat & I. M. Rizwanul , 2020. "Maximising Yield and Engine Efficiency Using Optimised Waste Cooking Oil Biodiesel," Energies, MDPI, vol. 13(22), pages 1-16, November.
    15. Iqbal Shajahan Mohamed & Elumalai Perumal Venkatesan & Murugesan Parthasarathy & Sreenivasa Reddy Medapati & Mohamed Abbas & Erdem Cuce & Saboor Shaik, 2022. "Optimization of Performance and Emission Characteristics of the CI Engine Fueled with Preheated Palm Oil in Blends with Diesel Fuel," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    16. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, R. & Ebadi, M.T. & Yusaf, Talal, 2018. "Novel environmentally friendly fuel: The effects of nanographene oxide additives on the performance and emission characteristics of diesel engines fuelled with Ailanthus altissima biodiesel," Renewable Energy, Elsevier, vol. 125(C), pages 283-294.
    17. Khusnutdinov, I. & Goncharova, I. & Safiulina, A. & Safina, D., 2023. "Study on the possibility of synthesizing oxygenates based on light pyrolysis resin using a modified ion exchange resin," Renewable Energy, Elsevier, vol. 217(C).
    18. Rai, Ranjeet Kumar & Sahoo, Rashmi Rekha, 2021. "Impact of different shape based hybrid nano additives in emulsion fuel for exergetic, energetic, and sustainability analysis of diesel engine," Energy, Elsevier, vol. 214(C).
    19. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Rahimi, A. & Yusaf, Talal & Mamat, Rizalman & Sidik, N.A.C. & Azmi, W.H., 2017. "Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine," Energy, Elsevier, vol. 131(C), pages 289-296.
    20. Mohan, Revu Krishn & Sarojini, Jajimoggala & Rajak, Upendra & Verma, Tikendra Nath & Ağbulut, Ümit, 2023. "Alternative fuel production from waste plastics and their usability in light duty diesel engine: Combustion, energy, and environmental analysis," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221026736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.