IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5558-d809096.html
   My bibliography  Save this article

Investigation of Dual–Pass Inclined Oscillating Bed Solar Dryer for Drying of Non-Parboiled Paddy Grains

Author

Listed:
  • Ganapathy Ponnambalam Arul

    (Department of Mechanical Engineering, Indra Ganesan College of Engineering, Srirangam 620012, Tamil Nadu, India)

  • Selvam Thulasi

    (Department of Mechanical Engineering, University College of Engineering, Thirukkuvalai, Nagappattinam 610201, Tamil Nadu, India)

  • Pitchaipillai Kumar

    (Department of Mechanical Engineering, Ariyalur Engineering College, Ariyalur 621704, Tamil Nadu, India)

  • Veeranan Arunprasad

    (Department of Mechanical Engineering, Theni Kammavar Sangam College of Technology, Koduvilarpatti, Theni 625534, Tamil Nadu, India)

  • Saboor Shaik

    (School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India)

  • Mohamed Abbas

    (Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
    Computers and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt)

  • Parvathy Rajendran

    (School of Aerospace Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia
    Faculty of Engineering & Computing, First City University College, Bandar Utama 47800, Selangor, Malaysia)

  • Sher Afghan Khan

    (Department of Mechanical Engineering, Faculty of Engineering, International Islamic University, Kuala Lumpur 53100, Selangor, Malaysia)

  • C. Ahamed Saleel

    (Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia)

Abstract

This Paper determines an experimental study of dual-pass solar dryer with a bed tilt of 0.5° and varying oscillating frequency of drying chamber namely 1.25, 1.75 and 2.25 Hz for drying an agricultural produce namely non–parboiled paddy grains. The oscillations and bed tilt are provided to move the grains from entry to exit of the top bed and moving down to bottom bed and finally exits from the dryer. The new technology has been used in the solar dryer for drying of agricultural produce such as non–parboiled paddy grains to increase the quality and to decrease the loss of the dried produce. The present dryer model was used for drying 45 kg of non–parboiled paddy grains from 19% (w.b) to the approved range of 12–14% of moisture content obtained in a single experimental day. The dried paddy grains obtained an average moisture content are 13.03, 13.22 and 13.51% at the frequency of oscillation of 1.25, 1.75, 2.25 Hz, respectively. The maximum thermal and pick-up efficiency of the model were obtained at 1.00 p.m. in all cases. For the frequency of oscillation of 1.25, 1.75 and 2.25 Hz, the maximum dryer thermal efficiency was 44.47, 43.39 and 41.39%, respectively, and the maximum pick–up efficiency was 80.41, 79.19 and 76.21%, respectively. The optimum drying performance was obtained at the oscillating frequency of 1.75 Hz with the bed tilt of 0.5°.

Suggested Citation

  • Ganapathy Ponnambalam Arul & Selvam Thulasi & Pitchaipillai Kumar & Veeranan Arunprasad & Saboor Shaik & Mohamed Abbas & Parvathy Rajendran & Sher Afghan Khan & C. Ahamed Saleel, 2022. "Investigation of Dual–Pass Inclined Oscillating Bed Solar Dryer for Drying of Non-Parboiled Paddy Grains," Sustainability, MDPI, vol. 14(9), pages 1-13, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5558-:d:809096
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5558/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5558/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yogendrasasidhar, D. & Pydi Setty, Y., 2018. "Drying kinetics, exergy and energy analyses of Kodo millet grains and Fenugreek seeds using wall heated fluidized bed dryer," Energy, Elsevier, vol. 151(C), pages 799-811.
    2. Sharma, Vinod Kumar & Colangelo, Antonio & Spagna, Giuseppe, 1995. "Experimental investigation of different solar dryers suitable for fruit and vegetable drying," Renewable Energy, Elsevier, vol. 6(4), pages 413-424.
    3. Shaik, Saboor & Maduru, Venkata Ramana & Kontoleon, Karolos J. & Arıcı, Müslüm & Gorantla, Kirankumar & Afzal, Asif, 2022. "Building glass retrofitting strategies in hot and dry climates: Cost savings on cooling, diurnal lighting, color rendering, and payback timeframes," Energy, Elsevier, vol. 243(C).
    4. Supranto, & Sopian, K. & Daud, W.R.W. & Othman, M.Y. & Yatim, B., 1999. "Design of an experimental solar assisted dryer for palm oil fronds," Renewable Energy, Elsevier, vol. 16(1), pages 643-646.
    5. Simate, I.N, 2003. "Optimization of mixed-mode and indirect-mode natural convection solar dryers," Renewable Energy, Elsevier, vol. 28(3), pages 435-453.
    6. Afriyie, J.K. & Nazha, M.A.A. & Rajakaruna, H. & Forson, F.K., 2009. "Experimental investigations of a chimney-dependent solar crop dryer," Renewable Energy, Elsevier, vol. 34(1), pages 217-222.
    7. Beigi, Mohsen & Tohidi, Mojtaba & Torki-Harchegani, Mehdi, 2017. "Exergetic analysis of deep-bed drying of rough rice in a convective dryer," Energy, Elsevier, vol. 140(P1), pages 374-382.
    8. Ağbulut, Ümit & Elibol, Erdem & Demirci, Tuna & Sarıdemir, Suat & Gürel, Ali Etem & Rajak, Upendra & Afzal, Asif & Verma, Tikendra Nath, 2022. "Synthesis of graphene oxide nanoparticles and the influences of their usage as fuel additives on CI engine behaviors," Energy, Elsevier, vol. 244(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    2. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    3. Liu, Zi-Liang & Zielinska, Magdalena & Yang, Xu-Hai & Yu, Xian-Long & Chen, Chang & Wang, Hui & Wang, Jun & Pan, Zhongli & Xiao, Hong-Wei, 2021. "Moisturizing strategy for enhanced convective drying of mushroom slices," Renewable Energy, Elsevier, vol. 172(C), pages 728-739.
    4. Zahra Parhizi & Hamed Karami & Iman Golpour & Mohammad Kaveh & Mariusz Szymanek & Ana M. Blanco-Marigorta & José Daniel Marcos & Esmail Khalife & Stanisław Skowron & Nashwan Adnan Othman & Yousef Darv, 2022. "Modeling and Optimization of Energy and Exergy Parameters of a Hybrid-Solar Dryer for Basil Leaf Drying Using RSM," Sustainability, MDPI, vol. 14(14), pages 1-27, July.
    5. Bin Li & Changyou Li & Tao Li & Zhiheng Zeng & Wenyan Ou & Chengjie Li, 2019. "Exergetic, Energetic, and Quality Performance Evaluation of Paddy Drying in a Novel Industrial Multi-Field Synergistic Dryer," Energies, MDPI, vol. 12(23), pages 1-19, December.
    6. Hamed Karami & Mohammad Kaveh & Iman Golpour & Esmail Khalife & Robert Rusinek & Bohdan Dobrzański & Marek Gancarz, 2021. "Thermodynamic Evaluation of the Forced Convective Hybrid-Solar Dryer during Drying Process of Rosemary ( Rosmarinus officinalis L.) Leaves," Energies, MDPI, vol. 14(18), pages 1-17, September.
    7. Mustayen, A.G.M.B. & Mekhilef, S. & Saidur, R., 2014. "Performance study of different solar dryers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 463-470.
    8. Li, Chengjie & Chen, Yifu & Zhang, Xuefeng & Mozafari, Ghazaleh & Fang, Zhuangdong & Cao, Yankai & Li, Changyou, 2022. "Exergy analysis and optimisation of an industrial-scale circulation counter-flow paddy drying process," Energy, Elsevier, vol. 251(C).
    9. Janjai, S. & Srisittipokakun, N. & Bala, B.K., 2008. "Experimental and modelling performances of a roof-integrated solar drying system for drying herbs and spices," Energy, Elsevier, vol. 33(1), pages 91-103.
    10. Rashidi, Milad & Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Kermani, Ali M., 2021. "Acceleration the drying process of oleaster (Elaeagnus angustifolia L.) using reflectors and desiccant system in a solar drying system," Renewable Energy, Elsevier, vol. 171(C), pages 526-541.
    11. Fudholi, A. & Sopian, K. & Ruslan, M.H. & Alghoul, M.A. & Sulaiman, M.Y., 2010. "Review of solar dryers for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 1-30, January.
    12. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    13. Gluesenkamp, Kyle R. & Boudreaux, Philip & Patel, Viral K. & Goodman, Dakota & Shen, Bo, 2019. "An efficient correlation for heat and mass transfer effectiveness in tumble-type clothes dryer drums," Energy, Elsevier, vol. 172(C), pages 1225-1242.
    14. Abiodun Okunola & Timothy Adekanye & Endurance Idahosa, 2021. "Energy and exergy analyses of okra drying process in a forced convection cabinet dryer," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 67(1), pages 8-16.
    15. Andrea Aquino & Pietro Poesio, 2021. "Off-Design Exergy Analysis of Convective Drying Using a Two-Phase Multispecies Model," Energies, MDPI, vol. 14(1), pages 1-36, January.
    16. Augustus Leon, M. & Kumar, S. & Bhattacharya, S. C., 2002. "A comprehensive procedure for performance evaluation of solar food dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 367-393, August.
    17. Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Orlando, Salgado Sandoval & Alfredo, Domínguez Niño, 2021. "Energy and exergy analyses of a mixed-mode solar dryer of pear slices (Pyrus communis L)," Energy, Elsevier, vol. 220(C).
    18. Boroze, Tchamye & Desmorieux, Hélène & Méot, Jean-Michel & Marouzé, Claude & Azouma, Yaovi & Napo, Kossi, 2014. "Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1240-1259.
    19. Li, Zhimin & Zhong, Hao & Tang, Runsheng & Liu, Tao & Gao, Wenfeng & Zhang, Yue, 2006. "Experimental investigation on solar drying of salted greengages," Renewable Energy, Elsevier, vol. 31(6), pages 837-847.
    20. Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5558-:d:809096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.