IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp458-465.html
   My bibliography  Save this article

Performance and emission characteristics of a CI engine using graphene oxide (GO) nano-particles additives in biodiesel-diesel blends

Author

Listed:
  • Hoseini, S.S.
  • Najafi, G.
  • Ghobadian, B.
  • Ebadi, M.T.
  • Mamat, R.
  • Yusaf, T.

Abstract

In the present study, the effects of graphene oxide (GO) nano-particles on performance and emissions of a diesel engine fueled with Oenothera lamarckiana biodiesel was investigated. Biodiesel was used in the blend of B20. The GO nano-particles with concentrations of 30, 60, and 90 ppm were considered for each fuel blend. Experiments were performed at a constant speed of 2100 rpm at loads of 0%, 25%, 50%, 75%, and 100%. Various parameters, such as power, exhaust gas temperature (EGT), carbon monoxide (CO), carbon dioxide (CO2), unburned hydrocarbons (UHCs), and nitrogen oxides (NOx), were investigated. Results showed that by using GO, power and EGT significantly increase. Furthermore, by using GO nano-particles, significant reductions in CO (∼5%–22%) and UHCs (∼17%–26%) were observed. However, under similar conditions, a slight increase in CO2 (∼7%–11%) and NOx (∼4%–9%) emissions observed. Finally, it can be concluded that nano-graphene oxide can be introduced as a suitable alternative fuel additive for Oenothera lamarckiana biodiesel blends.

Suggested Citation

  • Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Ebadi, M.T. & Mamat, R. & Yusaf, T., 2020. "Performance and emission characteristics of a CI engine using graphene oxide (GO) nano-particles additives in biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 145(C), pages 458-465.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:458-465
    DOI: 10.1016/j.renene.2019.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119308195
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hosseinzadeh-Bandbafha, Homa & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Orooji, Yasin & Shahbeik, Hossein & Mahian, Omid & Karimi-Maleh, Hassan & Kalam, Md Abul & Salehi Jouzani, Gholamreza & M, 2023. "Applications of nanotechnology in biodiesel combustion and post-combustion stages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Ağbulut, Ümit & Elibol, Erdem & Demirci, Tuna & Sarıdemir, Suat & Gürel, Ali Etem & Rajak, Upendra & Afzal, Asif & Verma, Tikendra Nath, 2022. "Synthesis of graphene oxide nanoparticles and the influences of their usage as fuel additives on CI engine behaviors," Energy, Elsevier, vol. 244(PA).
    3. Sannagoudar Basanagoudar, Arun & Maleki, Basir & Prakash Ravikumar, Mithun & Mounesh, & Kuppe, Pramoda & Kalanakoppal Venkatesh, Yatish, 2024. "Exploitation of Annona reticulata leaf extract for the synthesis of CeO2 nanoparticles as catalyst for the production of biodiesel using seed oil thereof," Energy, Elsevier, vol. 298(C).
    4. Ettefaghi, Ehsanollah & Rashidi, Alimorad & Ghobadian, Barat & Najafi, G. & Ghasemy, Ebrahim & Khoshtaghaza, Mohammad Hadi & Delavarizadeh, Saman & Mazlan, Mohamed, 2021. "Bio-nano emulsion fuel based on graphene quantum dot nanoparticles for reducing energy consumption and pollutants emission," Energy, Elsevier, vol. 218(C).
    5. Sandeep Krishnakumar & T. M. Yunus Khan & C. R. Rajashekhar & Manzoore Elahi M. Soudagar & Asif Afzal & Ashraf Elfasakhany, 2021. "Influence of Graphene Nano Particles and Antioxidants with Waste Cooking Oil Biodiesel and Diesel Blends on Engine Performance and Emissions," Energies, MDPI, vol. 14(14), pages 1-17, July.
    6. Maleki, Basir & Kalanakoppal Venkatesh, Yatish & Esmaeili, Hossein & Haddadi, Masoumeh & Mithun Prakash, Ravikumar & Balakrishna, Geetha R., 2024. "Novel Co3O4 decorated with rGO nanocatalyst to boost microwave-assisted biodiesel production and as nano-additive to enhance the performance-emission characteristics of diesel engine," Energy, Elsevier, vol. 289(C).
    7. Sathiyamoorthi Ramalingam & G Sankaranarayanan & S Senthil & R.A Rohith & R Santosh Kumar, 2023. "Effect of Cerium oxide nanoparticles derived from biosynthesis of Azadirachta indica on stability and performance of a research CI engine powered by Diesel-Lemongrass oil blends," Energy & Environment, , vol. 34(4), pages 886-908, June.
    8. Rai, Ranjeet Kumar & Sahoo, Rashmi Rekha, 2021. "Impact of different shape based hybrid nano additives in emulsion fuel for exergetic, energetic, and sustainability analysis of diesel engine," Energy, Elsevier, vol. 214(C).
    9. R. S. Gavhane & A. M. Kate & Manzoore Elahi M. Soudagar & V. D. Wakchaure & Sagar Balgude & I. M. Rizwanul Fattah & Nik-Nazri Nik-Ghazali & H. Fayaz & T. M. Yunus Khan & M. A. Mujtaba & Ravinder Kumar, 2021. "Influence of Silica Nano-Additives on Performance and Emission Characteristics of Soybean Biodiesel Fuelled Diesel Engine," Energies, MDPI, vol. 14(5), pages 1-16, March.
    10. K. M. Akkoli & S. C. Kamate & S. N. Topannavar & A. R. Bhavimani & N. R. Banapurmath & Ibham Veza & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & A. S. El-Shafay & M. A. Kalam & M. M. Shivashimpi & , 2022. "Influence of Injection Pressure and Aluminium Oxide Nano Particle-Added Fish Oil Methyl Ester on the Performance and Emission of Compression Ignition Engine," Energies, MDPI, vol. 15(24), pages 1-27, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:458-465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.