IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipes0360544221027006.html
   My bibliography  Save this article

Experimental study on the performance of an active novel vertical partition thermal storage wallboard based on composite phase change material with porous silica and microencapsulation

Author

Listed:
  • Kong, Xiangfei
  • Jiang, Lina
  • Yuan, Ye
  • Qiao, Xu

Abstract

In this study, a microencapsulated phase change material (MPCM) was mixed with a composite phase change material (CPCM) made of porous silica/paraffin to produce hybrid PCMs (C-MPCM), and then prepared two types of gypsum-based PCM wallboards (model A, which is M-A for short henceforth: Split; and model B, which is M − B for short henceforth: Hybrid). After that the physical properties and microstructure of the samples were evaluated. The results showed that paraffin wax was well immersed in porous silica with an optimal adsorption rate of 70% with no leakage. Meanwhile, the CPCM maintained good chemical compatibility and thermal stability. In addition, the thermal properties of PCM wallboards and gypsum wallboard were studied through an automatically controlled test system. Thermal performance showed that, both the M-A/B wallboards were able to keep the temperatures of room A/B within the thermal comfort range throughout the year. M-A wallboard was more energy efficient than M − B wallboard in summer working conditions; M − B wallboard was more energy efficient in winter working conditions. The total water supply duration consumed by M − B wallboard was far less than that of M-A wallboard. Considering comprehensively, M − B wallboard is more suitable for practical application in building energy saving.

Suggested Citation

  • Kong, Xiangfei & Jiang, Lina & Yuan, Ye & Qiao, Xu, 2022. "Experimental study on the performance of an active novel vertical partition thermal storage wallboard based on composite phase change material with porous silica and microencapsulation," Energy, Elsevier, vol. 239(PE).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221027006
    DOI: 10.1016/j.energy.2021.122451
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221027006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122451?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wieprzkowicz, Anna & Heim, Dariusz, 2020. "Modelling of thermal processes in a glazing structure with temperature dependent optical properties - An example of PCM-window," Renewable Energy, Elsevier, vol. 160(C), pages 653-662.
    2. Duan, Shuangping & Wang, Lin & Zhao, Zhiqiang & Zhang, Chengwang, 2021. "Experimental study on thermal performance of an integrated PCM Trombe wall," Renewable Energy, Elsevier, vol. 163(C), pages 1932-1941.
    3. Qu, Yue & Chen, Jiayu & Liu, Lifang & Xu, Tao & Wu, Huijun & Zhou, Xiaoqing, 2020. "Study on properties of phase change foam concrete block mixed with paraffin / fumed silica composite phase change material," Renewable Energy, Elsevier, vol. 150(C), pages 1127-1135.
    4. Wang, Lu & Kong, Xiangfei & Ren, Jianlin & Fan, Man & Li, Han, 2022. "Novel hybrid composite phase change materials with high thermal performance based on aluminium nitride and nanocapsules," Energy, Elsevier, vol. 238(PB).
    5. Zhang, Shu & Hu, Wanyu & Li, Dong & Zhang, Chengjun & Arıcı, Müslüm & Yıldız, Çağatay & Zhang, Xin & Ma, Yuxin, 2021. "Energy efficiency optimization of PCM and aerogel-filled multiple glazing windows," Energy, Elsevier, vol. 222(C).
    6. Zhu, Na & Hu, Naishuai & Hu, Pingfang & Lei, Fei & Li, Shanshan, 2019. "Experiment study on thermal performance of building integrated with double layers shape-stabilized phase change material wallboard," Energy, Elsevier, vol. 167(C), pages 1164-1180.
    7. Yu, Jinghua & Yang, Qingchen & Ye, Hong & Luo, Yongqiang & Huang, Junchao & Xu, Xinhua & Gang, Wenjie & Wang, Jinbo, 2020. "Thermal performance evaluation and optimal design of building roof with outer-layer shape-stabilized PCM," Renewable Energy, Elsevier, vol. 145(C), pages 2538-2549.
    8. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    9. Zhao, Manxiang & Zhang, Xu & Kong, Xiangfei, 2020. "Preparation and characterization of a novel composite phase change material with double phase change points based on nanocapsules," Renewable Energy, Elsevier, vol. 147(P1), pages 374-383.
    10. Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).
    11. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "Application of an active PCM storage system into a building for heating/cooling load reduction," Energy, Elsevier, vol. 210(C).
    12. Xamán, J. & Rodriguez-Ake, A. & Zavala-Guillén, I. & Hernández-Pérez, I. & Arce, J. & Sauceda, D., 2020. "Thermal performance analysis of a roof with a PCM-layer under Mexican weather conditions," Renewable Energy, Elsevier, vol. 149(C), pages 773-785.
    13. Pirasaci, Tolga, 2020. "Investigation of phase state and heat storage form of the phase change material (PCM) layer integrated into the exterior walls of the residential-apartment during heating season," Energy, Elsevier, vol. 207(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ting & Qiu, Xiaolin & Chen, Xiaojing & Lu, Lixin & Zhou, Binglin, 2022. "Sponge-like form-stable phase change materials with embedded graphene oxide for enhancing the thermal storage efficiency and the temperature response in transport packaging applications," Applied Energy, Elsevier, vol. 325(C).
    2. Fan, Man & Hu, Ming & Suo, Hanxiao & Kong, Xiangfei & Li, Han & Jia, Jie, 2024. "Preferred method and performance evaluation of heterogeneous composite phase change material (CPCM) wallboard in different seasons," Renewable Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuekuan, 2022. "Demand response flexibility with synergies on passive PCM walls, BIPVs, and active air-conditioning system in a subtropical climate," Renewable Energy, Elsevier, vol. 199(C), pages 204-225.
    2. Jinghua Yu & Kangxin Leng & Feifei Wang & Hong Ye & Yongqiang Luo, 2020. "Simulation Study on Dynamic Thermal Performance of a New Ventilated Roof with Form-Stable PCM in Southern China," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    3. Xie, Xing & Xu, Bin & Chen, Xing-ni & Pei, Gang, 2021. "Turning points emerging in the effect of thermal conductivity of phase change materials on utilization rate of latent heat in buildings," Renewable Energy, Elsevier, vol. 179(C), pages 1522-1536.
    4. Yang, Xinpeng & Li, Dong & Yang, Ruitong & Ma, Yuxin & Duan, Yanjiao & Zhang, Chengjun & Hu, Wanyu & Arıcı, Müslüm, 2023. "Parameter global optimization and climatic adaptability analysis of PCM glazed system for long-term application," Renewable Energy, Elsevier, vol. 217(C).
    5. Wang, Pengcheng & Liu, Zhongbing & Zhang, Ling & Wang, Zhe & Fan, Jianhua, 2023. "Inversion of extinction coefficient and refractive index of variable transparency solid–solid phase change material based on a hybrid model under real climatic conditions," Applied Energy, Elsevier, vol. 341(C).
    6. Yan, Tian & Zhou, Xuan & Xu, Xinhua & Yu, Jinghua & Li, Xianting, 2022. "Parametric analysis on performances of the pipe-encapsulated PCM (PenPCM) wall system coupled with gravity heat-pipe and nocturnal radiant cooler," Renewable Energy, Elsevier, vol. 196(C), pages 161-180.
    7. Fan, Man & Hu, Ming & Suo, Hanxiao & Kong, Xiangfei & Li, Han & Jia, Jie, 2024. "Preferred method and performance evaluation of heterogeneous composite phase change material (CPCM) wallboard in different seasons," Renewable Energy, Elsevier, vol. 220(C).
    8. Khaireldin Faraj & Mahmoud Khaled & Jalal Faraj & Farouk Hachem & Cathy Castelain, 2022. "A Summary Review on Experimental Studies for PCM Building Applications: Towards Advanced Modular Prototype," Energies, MDPI, vol. 15(4), pages 1-43, February.
    9. Arıcı, Müslüm & Bilgin, Feyza & Krajčík, Michal & Nižetić, Sandro & Karabay, Hasan, 2022. "Energy saving and CO2 reduction potential of external building walls containing two layers of phase change material," Energy, Elsevier, vol. 252(C).
    10. Mohseni, Ehsan & Tang, Waiching, 2021. "Parametric analysis and optimisation of energy efficiency of a lightweight building integrated with different configurations and types of PCM," Renewable Energy, Elsevier, vol. 168(C), pages 865-877.
    11. Gencel, Osman & Subasi, Serkan & Ustaoglu, Abid & Sarı, Ahmet & Marasli, Muhammed & Hekimoğlu, Gökhan & Kam, Erol, 2022. "Development, characterization and thermo-regulative performance of microencapsulated phase change material included-glass fiber reinforced foam concrete as novel thermal energy effective-building mate," Energy, Elsevier, vol. 257(C).
    12. Li, Chunying & Tang, Haida, 2024. "Phase change material window for dynamic energy flow regulation: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    13. Ke, Wei & Ji, Jie & Xu, Lijie & Xie, Hao & Wang, Chuyao & Yu, Bendong, 2021. "Annual performance analysis of a dual-air-channel solar wall system with phase change material in different climate regions of China," Energy, Elsevier, vol. 235(C).
    14. Erik Schmerse & Charles A. Ikutegbe & Amar Auckaili & Mohammed M. Farid, 2020. "Using PCM in Two Proposed Residential Buildings in Christchurch, New Zealand," Energies, MDPI, vol. 13(22), pages 1-25, November.
    15. Yu, Cairui & Shen, Dongmei & He, Wei & Hu, Zhongting & Zhang, Sheng & Chu, Wenfeng, 2021. "Parametric analysis of the phase change material wall combining with micro-channel heat pipe and sky radiative cooling technology," Renewable Energy, Elsevier, vol. 178(C), pages 1057-1069.
    16. Tavakoli, Ali & Farzaneh-Gord, Mahmood & Ebrahimi-Moghadam, Amir, 2023. "Using internal sinusoidal fins and phase change material for performance enhancement of thermal energy storage systems: Heat transfer and entropy generation analyses," Renewable Energy, Elsevier, vol. 205(C), pages 222-237.
    17. Ke, Wei & Ji, Jie & Zhang, Chengyan & Song, Zhiying & Wang, Chuyao & Xie, Hao & Tian, Xinyi, 2024. "Performance analysis of a novel hybrid CdTe-PCM multi-layer ventilated window system for building application: An experimental and numerical study," Energy, Elsevier, vol. 293(C).
    18. Lingyu Zheng & Xuelai Zhang & Weisan Hua & Xinfeng Wu & Fa Mao, 2021. "The Effect of Hydroxylated Multi-Walled Carbon Nanotubes on the Properties of Peg-Cacl 2 Form-Stable Phase Change Materials," Energies, MDPI, vol. 14(5), pages 1-17, March.
    19. Wang, Lu & Kong, Xiangfei & Ren, Jianlin & Fan, Man & Li, Han, 2022. "Novel hybrid composite phase change materials with high thermal performance based on aluminium nitride and nanocapsules," Energy, Elsevier, vol. 238(PB).
    20. Yao Lu & Faisal Khaled Aldawood & Wanyu Hu & Yuxin Ma & Mohamed Kchaou & Chengjun Zhang & Xinpeng Yang & Ruitong Yang & Zitong Qi & Dong Li, 2023. "Optimization Strategy for Selecting the Combination Structure of Multilayer Phase Change Material (PCM) Glazing Windows under Different Climate Zones," Sustainability, MDPI, vol. 15(23), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221027006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.