IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123010765.html
   My bibliography  Save this article

Parameter global optimization and climatic adaptability analysis of PCM glazed system for long-term application

Author

Listed:
  • Yang, Xinpeng
  • Li, Dong
  • Yang, Ruitong
  • Ma, Yuxin
  • Duan, Yanjiao
  • Zhang, Chengjun
  • Hu, Wanyu
  • Arıcı, Müslüm

Abstract

Filling phase change material (PCM) in the glazed system is crucial to achieving thermal inertia enhancement and solar radiation regulation. However, most previous investigations focused on the energy performance of the PCM glazed system (PCMGS) in typical periods, and the optimization of PCMGS was mainly conducted by control variables to obtain the optimal value of a single parameter, which cannot accurately guide for the long-term application of PCMGS. In this paper, a global optimization program coupled with a numerical model of PCMGS and differential evolution algorithm (DEA) was developed. The annual energy performance of PCMGS was simulated as the objective function to obtain the optimal values of 11 parameters. Subsequently, the climatic applicability of PCMGS was demonstrated by comparing the annual energy performance with that of the traditional double-glazed system (TDGS). The results indicate that the objective function value converges to optimal after 2000 iterations. PCMGS performs preeminent adaptability in hot regions, followed by intermediate regions. The energy consumption of the building when PCMGS is used is reduced by 13.80% and 1.58% respectively compared to the TDGS. However, in cold regions, PCMGS reveals deplorable adaptability, as the energy consumption increased by 36.58% compared to the TDGS.

Suggested Citation

  • Yang, Xinpeng & Li, Dong & Yang, Ruitong & Ma, Yuxin & Duan, Yanjiao & Zhang, Chengjun & Hu, Wanyu & Arıcı, Müslüm, 2023. "Parameter global optimization and climatic adaptability analysis of PCM glazed system for long-term application," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010765
    DOI: 10.1016/j.renene.2023.119161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123010765
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wieprzkowicz, Anna & Heim, Dariusz, 2020. "Modelling of thermal processes in a glazing structure with temperature dependent optical properties - An example of PCM-window," Renewable Energy, Elsevier, vol. 160(C), pages 653-662.
    2. Zhang, Shu & Hu, Wanyu & Li, Dong & Zhang, Chengjun & Arıcı, Müslüm & Yıldız, Çağatay & Zhang, Xin & Ma, Yuxin, 2021. "Energy efficiency optimization of PCM and aerogel-filled multiple glazing windows," Energy, Elsevier, vol. 222(C).
    3. Quesada, Guillermo & Rousse, Daniel & Dutil, Yvan & Badache, Messaoud & Hallé, Stéphane, 2012. "A comprehensive review of solar facades. Transparent and translucent solar facades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2643-2651.
    4. Meng, Yun & Tan, Yutong & Li, Xin & Cai, Yangjian & Peng, Jinqing & Long, Yi, 2022. "Building-integrated photovoltaic smart window with energy generation and conservation," Applied Energy, Elsevier, vol. 324(C).
    5. Biswas, Partha P. & Suganthan, P.N. & Wu, Guohua & Amaratunga, Gehan A.J., 2019. "Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 132(C), pages 425-438.
    6. Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.
    7. Ong, K.S., 2003. "A mathematical model of a solar chimney," Renewable Energy, Elsevier, vol. 28(7), pages 1047-1060.
    8. Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2018. "A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort," Applied Energy, Elsevier, vol. 226(C), pages 713-729.
    9. Fang, Yueping & Memon, Saim & Peng, Jingqing & Tyrer, Mark & Ming, Tingzhen, 2020. "Solar thermal performance of two innovative configurations of air-vacuum layered triple glazed windows," Renewable Energy, Elsevier, vol. 150(C), pages 167-175.
    10. Ilaria Vigna & Lorenza Bianco & Francesco Goia & Valentina Serra, 2018. "Phase Change Materials in Transparent Building Envelopes: A Strengths, Weakness, Opportunities and Threats (SWOT) Analysis," Energies, MDPI, vol. 11(1), pages 1-19, January.
    11. Gao, Yuan & Zheng, Qiye & Jonsson, Jacob C. & Lubner, Sean & Curcija, Charlie & Fernandes, Luis & Kaur, Sumanjeet & Kohler, Christian, 2021. "Parametric study of solid-solid translucent phase change materials in building windows," Applied Energy, Elsevier, vol. 301(C).
    12. Ke, Yujie & Tan, Yutong & Feng, Chengchen & Chen, Cong & Lu, Qi & Xu, Qiyang & Wang, Tao & Liu, Hai & Liu, Xinghai & Peng, Jinqing & Long, Yi, 2022. "Tetra-Fish-Inspired aesthetic thermochromic windows toward Energy-Saving buildings," Applied Energy, Elsevier, vol. 315(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Arasteh & Wahid Maref & Hamed H. Saber, 2023. "Energy and Thermal Performance Analysis of PCM-Incorporated Glazing Units Combined with Passive and Active Techniques: A Review Study," Energies, MDPI, vol. 16(3), pages 1-42, January.
    2. Wang, Pengcheng & Liu, Zhongbing & Zhang, Ling & Wang, Zhe & Fan, Jianhua, 2023. "Inversion of extinction coefficient and refractive index of variable transparency solid–solid phase change material based on a hybrid model under real climatic conditions," Applied Energy, Elsevier, vol. 341(C).
    3. Li, Chunying & Tang, Haida, 2024. "Phase change material window for dynamic energy flow regulation: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Kong, Xiangfei & Jiang, Lina & Yuan, Ye & Qiao, Xu, 2022. "Experimental study on the performance of an active novel vertical partition thermal storage wallboard based on composite phase change material with porous silica and microencapsulation," Energy, Elsevier, vol. 239(PE).
    5. Giulio Mangherini & Paolo Bernardoni & Eleonora Baccega & Alfredo Andreoli & Valentina Diolaiti & Donato Vincenzi, 2023. "Design of a Ventilated Façade Integrating a Luminescent Solar Concentrator Photovoltaic Panel," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    6. Wang, Guangpeng & Ma, Yuxin & Zhang, Shu & Li, Dong & Hu, Rong & Zhou, Yingming, 2023. "Thermal performance of a novel double-glazed window combining PCM and solar control glass in summer," Renewable Energy, Elsevier, vol. 219(P1).
    7. Shafaghat, A. & Keyvanfar, A., 2022. "Dynamic façades design typologies, technologies, measurement techniques, and physical performances across thermal, optical, ventilation, and electricity generation outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Lamnatou, Chr. & Mondol, J.D. & Chemisana, D. & Maurer, C., 2015. "Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 36-51.
    9. Lucrezia Ravasio & Rajnish Kaur Calay & Raymond Riise, 2021. "Simplified Thermal Performance Evaluation of a PCM-Filled Triple-Glazed Window under Arctic Climate Conditions," Energies, MDPI, vol. 14(23), pages 1-14, December.
    10. Ding, Yitong & Zhong, Chengxi & Yang, Fengying & Kang, Zeyang & Li, Bowen & Duan, Yuhao & Zhao, Zhiheng & Song, Xudong & Xiong, Ying & Guo, Shaoyun, 2023. "Low energy consumption thermochromic smart windows with flexibly regulated photothermal gain and radiation cooling," Applied Energy, Elsevier, vol. 348(C).
    11. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Xu, Bin & Fei, Yue & Chen, Xing-ni & Xie, Xing & Pei, Gang, 2024. "Influence of selective infrared emissivity design on the radiative cooling effect of windows: Laws exploration based on transient analysis," Energy, Elsevier, vol. 289(C).
    13. Long, Linshuang & Ye, Hong & Liu, Minghou, 2016. "A new insight into opaque envelopes in a passive solar house: Properties and roles," Applied Energy, Elsevier, vol. 183(C), pages 685-699.
    14. Ke, Wei & Ji, Jie & Zhang, Chengyan & Song, Zhiying & Wang, Chuyao & Xie, Hao & Tian, Xinyi, 2024. "Performance analysis of a novel hybrid CdTe-PCM multi-layer ventilated window system for building application: An experimental and numerical study," Energy, Elsevier, vol. 293(C).
    15. Yao Lu & Faisal Khaled Aldawood & Wanyu Hu & Yuxin Ma & Mohamed Kchaou & Chengjun Zhang & Xinpeng Yang & Ruitong Yang & Zitong Qi & Dong Li, 2023. "Optimization Strategy for Selecting the Combination Structure of Multilayer Phase Change Material (PCM) Glazing Windows under Different Climate Zones," Sustainability, MDPI, vol. 15(23), pages 1-24, November.
    16. Barbosa, Sabrina & Ip, Kenneth, 2014. "Perspectives of double skin façades for naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1019-1029.
    17. Yan, Peiliang & Fan, Weijun & Han, Yu & Ding, Hongbing & Wen, Chuang & Elbarghthi, Anas F.A. & Yang, Yan, 2023. "Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems," Applied Energy, Elsevier, vol. 346(C).
    18. Shaik, Saboor & Maduru, Venkata Ramana & Kirankumar, Gorantla & Arıcı, Müslüm & Ghosh, Aritra & Kontoleon, Karolos J. & Afzal, Asif, 2022. "Space-age energy saving, carbon emission mitigation and color rendering perspective of architectural antique stained glass windows," Energy, Elsevier, vol. 259(C).
    19. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    20. Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.