IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v341y2023ics0306261923004622.html
   My bibliography  Save this article

Inversion of extinction coefficient and refractive index of variable transparency solid–solid phase change material based on a hybrid model under real climatic conditions

Author

Listed:
  • Wang, Pengcheng
  • Liu, Zhongbing
  • Zhang, Ling
  • Wang, Zhe
  • Fan, Jianhua

Abstract

The application of phase change materials (PCMs) in transparent building envelopes has received extensive attention. However, most of the studies have simplified the optical parameters of the PCMs in their models. Because the temperature of PCMs cannot be controlled when using the spectrophotometer, it is difficult to measure the changing trend of optical parameters versus temperature. In this study, an inverse approach was developed for the first time, based on a hybrid model, to fit the accurate function expressions between the extinction coefficient and the refractive index of PCM and temperature. The hybrid model was a combination of experimental data-driven, mathematical models, and multi-objective optimization. Firstly, a test platform of the variable transparency solid–solid PCM (VTSS-PCM) window was constructed and tested last for a year to collect the datasets. Secondly, the photo-thermal coupling model of the window was established, in which the hysteresis and the total internal reflection phenomena were considered. Then, taking the unknown coefficients in the function expressions as decision variables, a bi-objective optimization model was built, based on two error statistics of experimental values and simulated values, and solved by genetic algorithm. Finally, the inversion dataset and validation dataset were used to prove the reliability of the inversion results. The results showed that the refractive index and extinction coefficient of the VTSS-PCM were 1.11 and 25.73 m−1 in the transparent phase, and 5.33 and 152.82 m−1 in the opaque phase. Within the phase change temperature range, the function expressions between the refractive index and extinction coefficient and the temperature were obtained respectively. The verification results showed that the function curves obtained by inversion were reliable. No matter whether the inversion dataset or validation dataset was used as input, the values of RMSE and CV(RMSE) met the ASHRAE Guidelines. The inversion method is meaningful to get the optical parameters of PCMs, to accurately evaluate the performance of PCM-built envelope.

Suggested Citation

  • Wang, Pengcheng & Liu, Zhongbing & Zhang, Ling & Wang, Zhe & Fan, Jianhua, 2023. "Inversion of extinction coefficient and refractive index of variable transparency solid–solid phase change material based on a hybrid model under real climatic conditions," Applied Energy, Elsevier, vol. 341(C).
  • Handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923004622
    DOI: 10.1016/j.apenergy.2023.121098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923004622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wieprzkowicz, Anna & Heim, Dariusz, 2020. "Modelling of thermal processes in a glazing structure with temperature dependent optical properties - An example of PCM-window," Renewable Energy, Elsevier, vol. 160(C), pages 653-662.
    2. Gallardo, Andres & Berardi, Umberto, 2022. "Evaluation of the energy flexibility potential of radiant ceiling panels with thermal energy storage," Energy, Elsevier, vol. 254(PC).
    3. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    4. Adilkhanova, Indira & Memon, Shazim Ali & Kim, Jong & Sheriyev, Almas, 2021. "A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime," Energy, Elsevier, vol. 217(C).
    5. Zhang, Shu & Hu, Wanyu & Li, Dong & Zhang, Chengjun & Arıcı, Müslüm & Yıldız, Çağatay & Zhang, Xin & Ma, Yuxin, 2021. "Energy efficiency optimization of PCM and aerogel-filled multiple glazing windows," Energy, Elsevier, vol. 222(C).
    6. Negar Mohtashami & Nico Fuchs & Maria Fotopoulou & Panagiotis Drosatos & Rita Streblow & Tanja Osterhage & Dirk Müller, 2022. "State of the Art of Technologies in Adaptive Dynamic Building Envelopes (ADBEs)," Energies, MDPI, vol. 15(3), pages 1-28, January.
    7. Liu, Changyu & Wu, Yangyang & Bian, Ji & Li, Dong & Liu, Xiaoyan, 2018. "Influence of PCM design parameters on thermal and optical performance of multi-layer glazed roof," Applied Energy, Elsevier, vol. 212(C), pages 151-161.
    8. Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2018. "A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort," Applied Energy, Elsevier, vol. 226(C), pages 713-729.
    9. Wang, Pengcheng & Liu, Zhongbing & Liu, Ruimiao & Zhang, Feng & Zhang, Ling, 2023. "Energy flexibility of PCM-integrated building: Combination parameters design and operation control in multi-objective optimization considering different stakeholders," Energy, Elsevier, vol. 268(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossein Arasteh & Wahid Maref & Hamed H. Saber, 2024. "3D Numerical Modeling to Assess the Energy Performance of Solid–Solid Phase Change Materials in Glazing Systems," Energies, MDPI, vol. 17(15), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chunying & Tang, Haida, 2024. "Phase change material window for dynamic energy flow regulation: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Yang, Xinpeng & Li, Dong & Yang, Ruitong & Ma, Yuxin & Duan, Yanjiao & Zhang, Chengjun & Hu, Wanyu & Arıcı, Müslüm, 2023. "Parameter global optimization and climatic adaptability analysis of PCM glazed system for long-term application," Renewable Energy, Elsevier, vol. 217(C).
    3. Kong, Xiangfei & Jiang, Lina & Yuan, Ye & Qiao, Xu, 2022. "Experimental study on the performance of an active novel vertical partition thermal storage wallboard based on composite phase change material with porous silica and microencapsulation," Energy, Elsevier, vol. 239(PE).
    4. Arıcı, Müslüm & Bilgin, Feyza & Krajčík, Michal & Nižetić, Sandro & Karabay, Hasan, 2022. "Energy saving and CO2 reduction potential of external building walls containing two layers of phase change material," Energy, Elsevier, vol. 252(C).
    5. Wang, Guangpeng & Ma, Yuxin & Zhang, Shu & Li, Dong & Hu, Rong & Zhou, Yingming, 2023. "Thermal performance of a novel double-glazed window combining PCM and solar control glass in summer," Renewable Energy, Elsevier, vol. 219(P1).
    6. Zhang, Shu & Ma, Yuxin & Li, Dong & Liu, Changyu & Yang, Ruitong, 2022. "Thermal performance of a reversible multiple-glazing roof filled with two PCM," Renewable Energy, Elsevier, vol. 182(C), pages 1080-1093.
    7. Yao Lu & Faisal Khaled Aldawood & Wanyu Hu & Yuxin Ma & Mohamed Kchaou & Chengjun Zhang & Xinpeng Yang & Ruitong Yang & Zitong Qi & Dong Li, 2023. "Optimization Strategy for Selecting the Combination Structure of Multilayer Phase Change Material (PCM) Glazing Windows under Different Climate Zones," Sustainability, MDPI, vol. 15(23), pages 1-24, November.
    8. Ali M. A. Faragalla & Somayeh Asadi, 2022. "Biomimetic Design for Adaptive Building Façades: A Paradigm Shift towards Environmentally Conscious Architecture," Energies, MDPI, vol. 15(15), pages 1-22, July.
    9. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
    10. Shaik, Saboor & Maduru, Venkata Ramana & Kirankumar, Gorantla & Arıcı, Müslüm & Ghosh, Aritra & Kontoleon, Karolos J. & Afzal, Asif, 2022. "Space-age energy saving, carbon emission mitigation and color rendering perspective of architectural antique stained glass windows," Energy, Elsevier, vol. 259(C).
    11. Chen, Xing-ni & Xu, Bin & Fei, Yue & Pei, Gang, 2024. "Combination optimization, importance order of parameters and aging consequence prediction for thermal insulation coating with radiation characteristics," Energy, Elsevier, vol. 290(C).
    12. Ait Laasri, Imad & Es-sakali, Niima & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Recent progress, limitations, and future directions of macro-encapsulated phase change materials for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    13. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Danielle Pinette & Roberto-Alonso Gonzalez-Lezcano & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Application and Validation of a Dynamic Energy Simulation Tool: A Case Study with Water Flow Glazing Envelope," Energies, MDPI, vol. 13(12), pages 1-20, June.
    14. Ahmad, Abrar & Memon, Shazim Ali, 2024. "A novel method to evaluate phase change materials' impact on buildings' energy, economic, and environmental performance via controlled natural ventilation," Applied Energy, Elsevier, vol. 353(PB).
    15. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
    16. Sun, Yanyi & Liu, Xin & Ming, Yang & Liu, Xiao & Mahon, Daniel & Wilson, Robin & Liu, Hao & Eames, Philip & Wu, Yupeng, 2021. "Energy and daylight performance of a smart window: Window integrated with thermotropic parallel slat-transparent insulation material," Applied Energy, Elsevier, vol. 293(C).
    17. Jue Guo & Chong Zhang, 2022. "Utilization of Window System as Exhaust Air Heat Recovery Device and Its Energy Performance Evaluation: A Comparative Study," Energies, MDPI, vol. 15(9), pages 1-18, April.
    18. Tan, Yutong & Peng, Jinqing & Luo, Yimo & Luo, Zhengyi & Curcija, Charlie & Fang, Yueping, 2022. "Numerical heat transfer modeling and climate adaptation analysis of vacuum-photovoltaic glazing," Applied Energy, Elsevier, vol. 312(C).
    19. Xie, Jiahan & Ajagekar, Akshay & You, Fengqi, 2023. "Multi-Agent attention-based deep reinforcement learning for demand response in grid-responsive buildings," Applied Energy, Elsevier, vol. 342(C).
    20. Kumar, Dileep & Alam, Morshed & Zou, Patrick X.W. & Sanjayan, Jay G. & Memon, Rizwan Ahmed, 2020. "Comparative analysis of building insulation material properties and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923004622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.