IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v210y2020ics0360544220316807.html
   My bibliography  Save this article

Application of an active PCM storage system into a building for heating/cooling load reduction

Author

Listed:
  • Gholamibozanjani, Gohar
  • Farid, Mohammed

Abstract

Incorporation of phase change materials (PCMs) into buildings has recently attracted widespread attention as they can bridge the mismatch between energy supply and demand through their large energy storage capacity. This paper presents the use of an active PCM storage system in buildings and evaluates its energy performance over the different seasons. To this end, two experimental huts, each equipped with solar and electric heaters in winter or an air conditioning unit in summer, were used to investigate the concept. Also, one of the huts was provided with PCM storage units, and the results obtained were compared with those collected from the reference hut. A CompactRIO, data acquisition system, powered by LabVIEW real-time software, was used to transfer data for analysis, processing, and communicating with the host computer. In this research, the active PCM storage units could store solar energy in cold seasons or free night cooling in warm seasons for later use and hence reduce the heating/cooling load requirements. An accumulative heating energy savings of 40% in May and 10.3% in June/July 2019, were achieved. The use of PCM for space cooling also led to an accumulative energy-saving of 30% in March/April and 10% in January.

Suggested Citation

  • Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "Application of an active PCM storage system into a building for heating/cooling load reduction," Energy, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220316807
    DOI: 10.1016/j.energy.2020.118572
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220316807
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118572?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ascione, Fabrizio & Bianco, Nicola & De Masi, Rosa Francesca & de’ Rossi, Filippo & Vanoli, Giuseppe Peter, 2014. "Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season," Applied Energy, Elsevier, vol. 113(C), pages 990-1007.
    2. Devaux, Paul & Farid, Mohammed Mehdi, 2017. "Benefits of PCM underfloor heating with PCM wallboards for space heating in winter," Applied Energy, Elsevier, vol. 191(C), pages 593-602.
    3. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system," Applied Energy, Elsevier, vol. 148(C), pages 39-48.
    4. Halawa, E. & Saman, W., 2011. "Thermal performance analysis of a phase change thermal storage unit for space heating," Renewable Energy, Elsevier, vol. 36(1), pages 259-264.
    5. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Valverde, José Manuel, 2017. "Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review," Applied Energy, Elsevier, vol. 203(C), pages 219-239.
    6. Najjar, Mohammad & Figueiredo, Karoline & Hammad, Ahmed W.A. & Haddad, Assed, 2019. "Integrated optimization with building information modeling and life cycle assessment for generating energy efficient buildings," Applied Energy, Elsevier, vol. 250(C), pages 1366-1382.
    7. Chiu, Justin N.W. & Gravoille, Pauline & Martin, Viktoria, 2013. "Active free cooling optimization with thermal energy storage in Stockholm," Applied Energy, Elsevier, vol. 109(C), pages 523-529.
    8. Gholamibozanjani, Gohar & Tarragona, Joan & Gracia, Alvaro de & Fernández, Cèsar & Cabeza, Luisa F. & Farid, Mohammed M., 2018. "Model predictive control strategy applied to different types of building for space heating," Applied Energy, Elsevier, vol. 231(C), pages 959-971.
    9. Khanna, Sourav & Reddy, K.S. & Mallick, Tapas K., 2017. "Performance analysis of tilted photovoltaic system integrated with phase change material under varying operating conditions," Energy, Elsevier, vol. 133(C), pages 887-899.
    10. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Cabeza, Luisa F., 2017. "Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings," Applied Energy, Elsevier, vol. 202(C), pages 420-434.
    11. Stevović, Ivan & Mirjanić, Dragoljub & Stevović, Svetlana, 2019. "Possibilities for wider investment in solar energy implementation," Energy, Elsevier, vol. 180(C), pages 495-510.
    12. Kuznik, Frédéric & Virgone, Joseph, 2009. "Experimental assessment of a phase change material for wall building use," Applied Energy, Elsevier, vol. 86(10), pages 2038-2046, October.
    13. Yang, Weibo & Xu, Rui & Yang, Binbin & Yang, Jingjing, 2019. "Experimental and numerical investigations on the thermal performance of a borehole ground heat exchanger with PCM backfill," Energy, Elsevier, vol. 174(C), pages 216-235.
    14. Englmair, Gerald & Moser, Christoph & Furbo, Simon & Dannemand, Mark & Fan, Jianhua, 2018. "Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system," Applied Energy, Elsevier, vol. 221(C), pages 522-534.
    15. Herrando, María & Pantaleo, Antonio M. & Wang, Kai & Markides, Christos N., 2019. "Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications," Renewable Energy, Elsevier, vol. 143(C), pages 637-647.
    16. Vallati, A. & Ocłoń, P. & Colucci, C. & Mauri, L. & de Lieto Vollaro, R. & Taler, J., 2019. "Energy analysis of a thermal system composed by a heat pump coupled with a PVT solar collector," Energy, Elsevier, vol. 174(C), pages 91-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khaireldin Faraj & Mahmoud Khaled & Jalal Faraj & Farouk Hachem & Cathy Castelain, 2022. "A Summary Review on Experimental Studies for PCM Building Applications: Towards Advanced Modular Prototype," Energies, MDPI, vol. 15(4), pages 1-43, February.
    2. Xinghui Zhang & Qili Shi & Lingai Luo & Yilin Fan & Qian Wang & Guanguan Jia, 2021. "Research Progress on the Phase Change Materials for Cold Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-46, December.
    3. Erik Schmerse & Charles A. Ikutegbe & Amar Auckaili & Mohammed M. Farid, 2020. "Using PCM in Two Proposed Residential Buildings in Christchurch, New Zealand," Energies, MDPI, vol. 13(22), pages 1-25, November.
    4. Lingyu Zheng & Xuelai Zhang & Weisan Hua & Xinfeng Wu & Fa Mao, 2021. "The Effect of Hydroxylated Multi-Walled Carbon Nanotubes on the Properties of Peg-Cacl 2 Form-Stable Phase Change Materials," Energies, MDPI, vol. 14(5), pages 1-17, March.
    5. Gado, Mohamed G. & Hassan, Hamdy, 2023. "Energy-saving potential of compression heat pump using thermal energy storage of phase change materials for cooling and heating applications," Energy, Elsevier, vol. 263(PE).
    6. Kong, Xiangfei & Jiang, Lina & Yuan, Ye & Qiao, Xu, 2022. "Experimental study on the performance of an active novel vertical partition thermal storage wallboard based on composite phase change material with porous silica and microencapsulation," Energy, Elsevier, vol. 239(PE).
    7. Filip Vrbanc & Mario Vašak & Vinko Lešić, 2023. "Simple and Accurate Model of Thermal Storage with Phase Change Material Tailored for Model Predictive Control," Energies, MDPI, vol. 16(19), pages 1-18, September.
    8. Chen, Xue & Li, Xiaolei & Xia, Xinlin & Sun, Chuang & Liu, Rongqiang, 2021. "Thermal storage analysis of a foam-filled PCM heat exchanger subjected to fluctuating flow conditions," Energy, Elsevier, vol. 216(C).
    9. Xu, Lijie & Ji, Jie & Cai, Jingyong & Ke, Wei & Tian, Xinyi & Yu, Bendong & Wang, Jun, 2021. "A hybrid PV thermal (water or air) wall system integrated with double air channel and phase change material: A continuous full-day seasonal experimental research," Renewable Energy, Elsevier, vol. 173(C), pages 596-613.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    2. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    3. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    4. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    5. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM energy storage in combination with night ventilation for space cooling," Applied Energy, Elsevier, vol. 158(C), pages 412-421.
    6. Kong, Xiangfei & Jie, Pengfei & Yao, Chengqiang & Liu, Yun, 2017. "Experimental study on thermal performance of phase change material passive and active combined using for building application in winter," Applied Energy, Elsevier, vol. 206(C), pages 293-302.
    7. Adilkhanova, Indira & Memon, Shazim Ali & Kim, Jong & Sheriyev, Almas, 2021. "A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime," Energy, Elsevier, vol. 217(C).
    8. Alam, Morshed & Zou, Patrick X.W. & Sanjayan, Jay & Ramakrishnan, Sayanthan, 2019. "Energy saving performance assessment and lessons learned from the operation of an active phase change materials system in a multi-storey building in Melbourne," Applied Energy, Elsevier, vol. 238(C), pages 1582-1595.
    9. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2018. "A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications," Energy, Elsevier, vol. 162(C), pages 1169-1182.
    10. Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.
    11. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Farah, Sleiman & Liu, Ming & Saman, Wasim, 2019. "Numerical investigation of phase change material thermal storage for space cooling," Applied Energy, Elsevier, vol. 239(C), pages 526-535.
    13. Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Bimaganbetova, Madina & Memon, Shazim Ali & Sheriyev, Almas, 2020. "Performance evaluation of phase change materials suitable for cities representing the whole tropical savanna climate region," Renewable Energy, Elsevier, vol. 148(C), pages 402-416.
    15. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    16. Borderon, Julien & Virgone, Joseph & Cantin, Richard, 2015. "Modeling and simulation of a phase change material system for improving summer comfort in domestic residence," Applied Energy, Elsevier, vol. 140(C), pages 288-296.
    17. Souayfane, Farah & Biwole, Pascal Henry & Fardoun, Farouk & Achard, Patrick, 2019. "Energy performance and economic analysis of a TIM-PCM wall under different climates," Energy, Elsevier, vol. 169(C), pages 1274-1291.
    18. Luca Brunelli & Emiliano Borri & Anna Laura Pisello & Andrea Nicolini & Carles Mateu & Luisa F. Cabeza, 2024. "Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    19. Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials," Applied Energy, Elsevier, vol. 215(C), pages 566-576.
    20. Li, Weilin & Jing, Mingyi & Li, Rufei & Gao, Junxi & Zhu, Jiayin & Li, Ruixin, 2023. "Study of the optimal placement of phase change materials in existing buildings for cooling load reduction - Take the Central Plain of China as an example," Renewable Energy, Elsevier, vol. 209(C), pages 71-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220316807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.