IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp204-225.html
   My bibliography  Save this article

Demand response flexibility with synergies on passive PCM walls, BIPVs, and active air-conditioning system in a subtropical climate

Author

Listed:
  • Zhou, Yuekuan

Abstract

Energy-efficient buildings and renewable power supply are two mainstreams for achieving zero-energy buildings and contributing to the energy paradigm transition towards carbon neutrality from building sectors. Due to the significant heat loss and large surface areas, building envelopes are full of potentials in reducing the cooling/heating load through enhanced thermal insulation performance and converting solar radiation into renewable energy with photovoltaics (PVs). However, smart connection with synergic complementary functions has not been comprehensively studied among heating, ventilation, and air-conditioning (HVAC) systems, phase change material (PCM) wall, and building integrated PVs (BIPVs). In this study, a transient and dynamic platform for energy-efficient buildings was established, integrating PCM walls and BIPVs. Multiple functions of the platform can be achieved, e.g., enhancement in thermal inertia and storage capacity of building envelopes with PCM, solar shading from BIPVs, renewable energy-driven HVAC, thermal regeneration on PCM with nighttime cooling and pre-cooling in the built environment. Synergistic functions between BIPVs and passive PCM layer are studied, e.g., the BIPVs can provide solar shading and thermally regenerate the PCM to resist the exterior heat flux during 1st-7th Aug. In-depth analysis was conducted on thermodynamics of PCMs, in respect to different geometrical (e.g., PCM thickness) and thermophysical parameters (e.g., latent heat and thermal conductivity on PCM). Afterwards, flexible charging/discharging strategies on latent heat with smart control on an indoor setpoint of HVAC were proposed, implemented, and compared, so as to shift grid electricity from off-peak to peak period. The proposed PCM charging/discharging strategies include pre-cooling for load shifting and floating indoor air setpoint. Parametrical analysis on different off-peak electric prices was conducted, to provide qualitative results on annual import cost savings. Research results indicate that, due to the shading of solar radiation, the vertical BIPVs will reduce the building cooling load from 73.5 to 67.9 kWh/m2·a by 7.6%, and the peak power from 503.1 to 466.8 kW by 7.2%. Synergistic functions between BIPVs and passive PCM walls can resist the heat flux with a higher magnitude for a shorter period during 1st-7th Aug, and provide heat with a higher magnitude for a longer period during 1st-7th Jan. Furthermore, by adopting the pre-cooling strategy with smart operation on HVAC systems for PCM regeneration, the PCM melting fraction range can be expanded from [0.92, 1] to [0.75, 1], together with the increase in accumulated heat from 307427.8 to 337881.1 kJ by 9.9%. By adopting the floating indoor air setpoint temperature strategy with smart operation on HVAC systems, the annual import cost is decreased from 65.1 to 61.1 HK$/m2·a by 6.1%. Economic performance analysis indicates that, with the grid feed-in tariff in Hong Kong, the simple payback time (SPBT) is around 17 years, while the PCM layer will prolong the SPBT to exceed 20 years. This study can enhance the thermal regulation capacity of building envelopes, together with a flexible connection between active HAVC systems and passive PCM walls with techno-economic viability.

Suggested Citation

  • Zhou, Yuekuan, 2022. "Demand response flexibility with synergies on passive PCM walls, BIPVs, and active air-conditioning system in a subtropical climate," Renewable Energy, Elsevier, vol. 199(C), pages 204-225.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:204-225
    DOI: 10.1016/j.renene.2022.08.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122013039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Wenlong & Yuan, Yanping & Sun, Liangliang & Cao, Xiaoling & Yang, Xiaojiao, 2016. "Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials," Renewable Energy, Elsevier, vol. 99(C), pages 1029-1037.
    2. Piselli, Cristina & Prabhakar, Mohit & de Gracia, Alvaro & Saffari, Mohammad & Pisello, Anna Laura & Cabeza, Luisa F., 2020. "Optimal control of natural ventilation as passive cooling strategy for improving the energy performance of building envelope with PCM integration," Renewable Energy, Elsevier, vol. 162(C), pages 171-181.
    3. Zhou, Yuekuan & Zheng, Siqian, 2020. "Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities," Applied Energy, Elsevier, vol. 262(C).
    4. Duan, Shuangping & Wang, Lin & Zhao, Zhiqiang & Zhang, Chengwang, 2021. "Experimental study on thermal performance of an integrated PCM Trombe wall," Renewable Energy, Elsevier, vol. 163(C), pages 1932-1941.
    5. Pavlak, Gregory S. & Henze, Gregor P. & Cushing, Vincent J., 2015. "Evaluating synergistic effect of optimally controlling commercial building thermal mass portfolios," Energy, Elsevier, vol. 84(C), pages 161-176.
    6. Sun, Xiaoqin & Lin, Yian & Zhu, Ziyang & Li, Jie, 2022. "Optimized design of a distributed photovoltaic system in a building with phase change materials," Applied Energy, Elsevier, vol. 306(PA).
    7. Zhang, Shu & Hu, Wanyu & Li, Dong & Zhang, Chengjun & Arıcı, Müslüm & Yıldız, Çağatay & Zhang, Xin & Ma, Yuxin, 2021. "Energy efficiency optimization of PCM and aerogel-filled multiple glazing windows," Energy, Elsevier, vol. 222(C).
    8. Lee, Jae Bum & Park, Jae Wan & Yoon, Jong Ho & Baek, Nam Choon & Kim, Dai Kon & Shin, U. Cheul, 2014. "An empirical study of performance characteristics of BIPV (Building Integrated Photovoltaic) system for the realization of zero energy building," Energy, Elsevier, vol. 66(C), pages 25-34.
    9. Lu, Shilei & Gao, Jingxian & Tong, Haojie & Yin, Shuai & Tang, Xiaolei & Jiang, Xiangyang, 2020. "Model establishment and operation optimization of the casing PCM radiant floor heating system," Energy, Elsevier, vol. 193(C).
    10. Utama, Christian & Troitzsch, Sebastian & Thakur, Jagruti, 2021. "Demand-side flexibility and demand-side bidding for flexible loads in air-conditioned buildings," Applied Energy, Elsevier, vol. 285(C).
    11. Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.
    12. Liu, Zhengxuan & Sun, Pengchen & Xie, Mingjing & Zhou, Yuekuan & He, Yingdong & Zhang, Guoqiang & Chen, Dachuan & Li, Shuisheng & Yan, Zhongjun & Qin, Di, 2021. "Multivariant optimization and sensitivity analysis of an experimental vertical earth-to-air heat exchanger system integrating phase change material with Taguchi method," Renewable Energy, Elsevier, vol. 173(C), pages 401-414.
    13. Hlanze, Philani & Elhefny, Aly & Jiang, Zhimin & Cai, Jie & Shabgard, Hamidreza, 2022. "In-duct phase change material-based energy storage to enhance building demand flexibility," Applied Energy, Elsevier, vol. 310(C).
    14. Aelenei, Daniel & Lopes, Rui Amaral & Aelenei, Laura & Gonçalves, Helder, 2019. "Investigating the potential for energy flexibility in an office building with a vertical BIPV and a PV roof system," Renewable Energy, Elsevier, vol. 137(C), pages 189-197.
    15. Hassan, Ali & Wahab, Abdul & Qasim, Muhammad Arslan & Janjua, Muhammad Mansoor & Ali, Muhammad Aon & Ali, Hafiz Muhammad & Jadoon, Tufail Rehman & Ali, Ejaz & Raza, Ahsan & Javaid, Noshairwan, 2020. "Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system," Renewable Energy, Elsevier, vol. 145(C), pages 282-293.
    16. Zhou, Yuekuan & Zheng, Siqian & Zhang, Guoqiang, 2020. "Machine-learning based study on the on-site renewable electrical performance of an optimal hybrid PCMs integrated renewable system with high-level parameters’ uncertainties," Renewable Energy, Elsevier, vol. 151(C), pages 403-418.
    17. Xu, Lijie & Ji, Jie & Cai, Jingyong & Ke, Wei & Tian, Xinyi & Yu, Bendong & Wang, Jun, 2021. "A hybrid PV thermal (water or air) wall system integrated with double air channel and phase change material: A continuous full-day seasonal experimental research," Renewable Energy, Elsevier, vol. 173(C), pages 596-613.
    18. Chen, Yongbao & Xu, Peng & Chen, Zhe & Wang, Hongxin & Sha, Huajing & Ji, Ying & Zhang, Yongming & Dou, Qiang & Wang, Sheng, 2020. "Experimental investigation of demand response potential of buildings: Combined passive thermal mass and active storage," Applied Energy, Elsevier, vol. 280(C).
    19. Zhang, Shiwei & Chen, Jieling & Sun, Yalong & Li, Jie & Zeng, Jian & Yuan, Wei & Tang, Yong, 2019. "Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe," Renewable Energy, Elsevier, vol. 135(C), pages 1133-1143.
    20. Rahimpour, Zahra & Verbič, Gregor & Chapman, Archie C., 2022. "Can phase change materials in building insulation improve self-consumption of residential rooftop solar? An Australian case study," Renewable Energy, Elsevier, vol. 192(C), pages 24-34.
    21. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    22. Shafie-khah, M. & Kheradmand, M. & Javadi, S. & Azenha, M. & de Aguiar, J.L.B. & Castro-Gomes, J. & Siano, P. & Catalão, J.P.S., 2016. "Optimal behavior of responsive residential demand considering hybrid phase change materials," Applied Energy, Elsevier, vol. 163(C), pages 81-92.
    23. Zhou, Yuekuan & Zheng, Siqian & Zhang, Guoqiang, 2019. "Study on the energy performance enhancement of a new PCMs integrated hybrid system with the active cooling and hybrid ventilations," Energy, Elsevier, vol. 179(C), pages 111-128.
    24. Zhou, Yuekuan & Zheng, Siqian & Liu, Zhengxuan & Wen, Tao & Ding, Zhixiong & Yan, Jun & Zhang, Guoqiang, 2020. "Passive and active phase change materials integrated building energy systems with advanced machine-learning based climate-adaptive designs, intelligent operations, uncertainty-based analysis and optim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    25. Rathore, Pushpendra Kumar Singh & Shukla, Shailendra Kumar, 2020. "An experimental evaluation of thermal behavior of the building envelope using macroencapsulated PCM for energy savings," Renewable Energy, Elsevier, vol. 149(C), pages 1300-1313.
    26. Qu, Y. & Wang, S. & Zhou, D. & Tian, Y., 2020. "Experimental study on thermal conductivity of paraffin-based shape-stabilized phase change material with hybrid carbon nano-additives," Renewable Energy, Elsevier, vol. 146(C), pages 2637-2645.
    27. Cairui Yu & Dongmei Shen & Qingyang Jiang & Wei He & Hancheng Yu & Zhongting Hu & Hongbing Chen & Pengkun Yu & Sheng Zhang, 2019. "Numerical and Experimental Study on the Heat Dissipation Performance of a Novel System," Energies, MDPI, vol. 13(1), pages 1-26, December.
    28. Pirasaci, Tolga, 2020. "Investigation of phase state and heat storage form of the phase change material (PCM) layer integrated into the exterior walls of the residential-apartment during heating season," Energy, Elsevier, vol. 207(C).
    29. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Xinyao & Zhou, Yuekuan, 2024. "Dynamic heat-transfer mechanism and performance analysis of an integrated Trombe wall with radiant cooling for natural cooling energy harvesting and air-conditioning," Energy, Elsevier, vol. 288(C).
    2. Hernández, José L. & de Miguel, Ignacio & Vélez, Fredy & Vasallo, Ali, 2024. "Challenges and opportunities in European smart buildings energy management: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Zheng, Xinyao & Zhou, Yuekuan, 2023. "A three-dimensional unsteady numerical model on a novel aerogel-based PV/T-PCM system with dynamic heat-transfer mechanism and solar energy harvesting analysis," Applied Energy, Elsevier, vol. 338(C).
    4. Ding, Zhixiong & Wu, Wei, 2024. "A phase-change-material-assisted absorption thermal battery for space heating under low ambient temperatures," Energy, Elsevier, vol. 299(C).
    5. Wang, Pengcheng & Liu, Zhongbing & Liu, Ruimiao & Zhang, Feng & Zhang, Ling, 2023. "Energy flexibility of PCM-integrated building: Combination parameters design and operation control in multi-objective optimization considering different stakeholders," Energy, Elsevier, vol. 268(C).
    6. Fatih Selimefendigil & Damla Okulu & Hakan F. Öztop, 2023. "Photovoltaic Thermal Management by Combined Utilization of Thermoelectric Generator and Power-Law-Nanofluid-Assisted Cooling Channel," Sustainability, MDPI, vol. 15(6), pages 1-29, March.
    7. Zhou, Yuekuan & Zheng, Siqian, 2024. "A co-simulated material-component-system-district framework for climate-adaption and sustainability transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Ren, Kezheng & Liu, Jun & Wu, Zeyang & Liu, Xinglei & Nie, Yongxin & Xu, Haitao, 2024. "A data-driven DRL-based home energy management system optimization framework considering uncertain household parameters," Applied Energy, Elsevier, vol. 355(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    2. Kong, Xiangfei & Jiang, Lina & Yuan, Ye & Qiao, Xu, 2022. "Experimental study on the performance of an active novel vertical partition thermal storage wallboard based on composite phase change material with porous silica and microencapsulation," Energy, Elsevier, vol. 239(PE).
    3. Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.
    4. Zhou, Yuekuan & Zheng, Siqian, 2020. "Multi-level uncertainty optimisation on phase change materials integrated renewable systems with hybrid ventilations and active cooling," Energy, Elsevier, vol. 202(C).
    5. Liu, Zhengxuan & Sun, Pengchen & Xie, Mingjing & Zhou, Yuekuan & He, Yingdong & Zhang, Guoqiang & Chen, Dachuan & Li, Shuisheng & Yan, Zhongjun & Qin, Di, 2021. "Multivariant optimization and sensitivity analysis of an experimental vertical earth-to-air heat exchanger system integrating phase change material with Taguchi method," Renewable Energy, Elsevier, vol. 173(C), pages 401-414.
    6. Shen, Yongliang & Liu, Shuli & Mazhar, Abdur Rehman & Han, Xiaojing & Yang, Liu & Yang, Xiu'e, 2021. "A review of solar-driven short-term low temperature heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Zhou, Yuekuan & Zheng, Siqian & Liu, Zhengxuan & Wen, Tao & Ding, Zhixiong & Yan, Jun & Zhang, Guoqiang, 2020. "Passive and active phase change materials integrated building energy systems with advanced machine-learning based climate-adaptive designs, intelligent operations, uncertainty-based analysis and optim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    8. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    9. Li, Weilin & Jing, Mingyi & Li, Rufei & Gao, Junxi & Zhu, Jiayin & Li, Ruixin, 2023. "Study of the optimal placement of phase change materials in existing buildings for cooling load reduction - Take the Central Plain of China as an example," Renewable Energy, Elsevier, vol. 209(C), pages 71-84.
    10. Yan, Tian & Zhou, Xuan & Xu, Xinhua & Yu, Jinghua & Li, Xianting, 2022. "Parametric analysis on performances of the pipe-encapsulated PCM (PenPCM) wall system coupled with gravity heat-pipe and nocturnal radiant cooler," Renewable Energy, Elsevier, vol. 196(C), pages 161-180.
    11. Abdelkader Sarri & Saleh Nasser Al-Saadi & Müslüm Arıcı & Djamel Bechki & Hamza Bouguettaia, 2023. "Architectural Design Strategies for Enhancement of Thermal and Energy Performance of PCMs-Embedded Envelope System for an Office Building in a Typical Arid Saharan Climate," Sustainability, MDPI, vol. 15(2), pages 1-29, January.
    12. Ljungdahl, V. & Taha, K. & Dallaire, J. & Kieseritzky, E. & Pawelz, F. & Jradi, M. & Veje, C., 2021. "Phase change material based ventilation module - Numerical study and experimental validation of serial design," Energy, Elsevier, vol. 234(C).
    13. Xu, Ruoyu & Liu, Xiaochen & Liu, Xiaohua & Zhang, Tao, 2024. "Quantifying the energy flexibility potential of a centralized air-conditioning system: A field test study of hub airports," Energy, Elsevier, vol. 298(C).
    14. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    15. Ren, Kezheng & Liu, Jun & Wu, Zeyang & Liu, Xinglei & Nie, Yongxin & Xu, Haitao, 2024. "A data-driven DRL-based home energy management system optimization framework considering uncertain household parameters," Applied Energy, Elsevier, vol. 355(C).
    16. Javadi, Hossein & Urchueguía, Javier F. & Badenes, Borja & Mateo, Miguel Á. & Nejad Ghafar, Ali & Chaudhari, Ojas Arun & Zirgulis, Giedrius & Lemus, Lenin G., 2022. "Laboratory and numerical study on innovative grouting materials applicable to borehole heat exchangers (BHE) and borehole thermal energy storage (BTES) systems," Renewable Energy, Elsevier, vol. 194(C), pages 788-804.
    17. Xie, Xing & Chen, Xing-ni & Xu, Bin & Fei, Yue & Pei, Gang, 2022. "Study based on “Heat Flux - Energy Saving Pointer”: Exploring why phase change materials is not energy efficient enough on internal wall in cold region," Renewable Energy, Elsevier, vol. 196(C), pages 1308-1324.
    18. Palmer, Ben & Arshad, Adeel & Yang, Yan & Wen, Chuang, 2023. "Energy storage performance improvement of phase change materials-based triplex-tube heat exchanger (TTHX) using liquid–solid interface-informed fin configurations," Applied Energy, Elsevier, vol. 333(C).
    19. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    20. Xu, Lijie & Ji, Jie & Cai, Jingyong & Ke, Wei & Tian, Xinyi & Yu, Bendong & Wang, Jun, 2021. "A hybrid PV thermal (water or air) wall system integrated with double air channel and phase change material: A continuous full-day seasonal experimental research," Renewable Energy, Elsevier, vol. 173(C), pages 596-613.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:204-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.