IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipes0360544221026748.html
   My bibliography  Save this article

Thermodynamic and economic assessment of cyano functionalized anion based ionic liquid for CO2 removal from natural gas integrated with, single mixed refrigerant liquefaction process for clean energy

Author

Listed:
  • Kazmi, Bilal
  • Haider, Junaid
  • Ammar Taqvi, Syed Ali
  • Qyyum, Muhammad Abdul
  • Ali, Syed Imran
  • Hussain Awan, Zahoor Ul
  • Lim, Hankwon
  • Naqvi, Muhammad
  • Naqvi, Salman Raza

Abstract

The study proposes a novel integrated process in which ionic liquid is utilized to control carbon dioxide (CO2) emissions from the natural gas combined with a single mixed refrigerant-based liquefaction process to assist safe transportation over long distances providing a sustainable and cleaner energy. Commercially amines are utilized for CO2 sequestration, but amines entail energy-intensive regeneration with elevated process costs. The present study offers a solvent screening mechanism based on important parameters such as heat of dissolution, viscosity, selectivity, working capacity, vapor pressure, corrosivity, and toxicity. The selected solvents’ performance is computed by sensitivity analysis suggesting imidazolium-based cation 1-hexyl-3-methylimidazolium[Hmim] functionalized with tricyanomethanide(tcm) as anion a potential natural gas sweetening solvent in comparison with commercially used solvent monoethanoloamine(MEA), conventional ILs 1-butyl-3-methylimidazolium hexafluorophosphate [Bmim][Pf6] and 1-butyl-3-methylimidazolium methyl sulfate [Bmim][MeSO4]. The obtained sweet gas is liquefied using a single mixed refrigerant-based process providing 0.99 mol fraction of liquefied CH4 with less overall specific compression power requirement of 0.41 kW/kg of natural gas. Moreover, an exergy analysis demonstrates that the [Hmim][tcm] based process has lower total exergy destruction of 7.49 × 103 kW and is found to utilize less overall specific energy consumption 0.49 kWh/kg of NG in contrast to other studied solvents. Furthermore, a detailed economic analysis establishes [Hmim][tcm]-based CO2 integrated with liquefaction technology offers 50.7%, 74.4%, and 85.8% of total annualized cost (TAC) savings compared with the MEA-,[Bmim][Pf6]-, and [Bmim][MeSO4], respectively. Hence, [Hmim][tcm] for CO2 removal and integration with liquefaction process will incur unit cost based on the total annualized cost to be $2.2 × 104/kmol of purified NG.

Suggested Citation

  • Kazmi, Bilal & Haider, Junaid & Ammar Taqvi, Syed Ali & Qyyum, Muhammad Abdul & Ali, Syed Imran & Hussain Awan, Zahoor Ul & Lim, Hankwon & Naqvi, Muhammad & Naqvi, Salman Raza, 2022. "Thermodynamic and economic assessment of cyano functionalized anion based ionic liquid for CO2 removal from natural gas integrated with, single mixed refrigerant liquefaction process for clean energy," Energy, Elsevier, vol. 239(PE).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221026748
    DOI: 10.1016/j.energy.2021.122425
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221026748
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naqvi, Salman Raza & Naqvi, Muhammad & Ammar Taqvi, Syed Ali & Iqbal, Farukh & Inayat, Abrar & Khoja, Asif Hussain & Mehran, Muhammad Taqi & Ayoub, Muhammad & Shahbaz, Muhammad & Saidina Amin, Nor Ais, 2021. "Agro-industrial residue gasification feasibility in captive power plants: A South-Asian case study," Energy, Elsevier, vol. 214(C).
    2. Geuzebroek, F.H. & Schneiders, L.H.J.M. & Kraaijveld, G.J.C. & Feron, P.H.M., 2004. "Exergy analysis of alkanolamine-based CO2 removal unit with AspenPlus," Energy, Elsevier, vol. 29(9), pages 1241-1248.
    3. Zhang, Yingying & Ji, Xiaoyan & Xie, Yujiao & Lu, Xiaohua, 2016. "Screening of conventional ionic liquids for carbon dioxide capture and separation," Applied Energy, Elsevier, vol. 162(C), pages 1160-1170.
    4. Feyzi, Vafa & Beheshti, Masoud & Gharibi Kharaji, Abolfazl, 2017. "Exergy analysis: A CO2 removal plant using a-MDEA as the solvent," Energy, Elsevier, vol. 118(C), pages 77-84.
    5. Haider, Junaid & Saeed, Saad & Qyyum, Muhammad Abdul & Kazmi, Bilal & Ahmad, Rizwan & Muhammad, Ayyaz & Lee, Moonyong, 2020. "Simultaneous capture of acid gases from natural gas adopting ionic liquids: Challenges, recent developments, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    6. Ma, Chunyan & Liu, Chang & Lu, Xiaohua & Ji, Xiaoyan, 2018. "Techno-economic analysis and performance comparison of aqueous deep eutectic solvent and other physical absorbents for biogas upgrading," Applied Energy, Elsevier, vol. 225(C), pages 437-447.
    7. Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.
    8. Wang, Zhe & Fan, Weiyu & Zhang, Guangqing & Dong, Shuang, 2016. "Exergy analysis of methane cracking thermally coupled with chemical looping combustion for hydrogen production," Applied Energy, Elsevier, vol. 168(C), pages 1-12.
    9. Qyyum, Muhammad Abdul & Duong, Pham Luu Trung & Minh, Le Quang & Lee, Sanggyu & Lee, Moonyong, 2019. "Dual mixed refrigerant LNG process: Uncertainty quantification and dimensional reduction sensitivity analysis," Applied Energy, Elsevier, vol. 250(C), pages 1446-1456.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Guo & Qi Wang & Maofei Geng & Xueyuan Peng & Jianmei Feng, 2023. "Effects of Liquid Density on the Gas-Liquid Interaction of the Ionic Liquid Compressor for Hydrogen Storage," Energies, MDPI, vol. 16(7), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    2. Wang, Honglin & Ma, Chunyan & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Improving high-pressure water scrubbing through process integration and solvent selection for biogas upgrading," Applied Energy, Elsevier, vol. 276(C).
    3. Pashchenko, Dmitry, 2019. "Combined methane reforming with a mixture of methane combustion products and steam over a Ni-based catalyst: An experimental and thermodynamic study," Energy, Elsevier, vol. 185(C), pages 573-584.
    4. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    5. He, Tianbiao & Zhou, Zhongming & Mao, Ning & Qyyum, Muhammad Abdul, 2024. "Transcritical CO2 precooled single mixed refrigerant natural gas liquefaction process: Exergy and Exergoeconomic optimization," Energy, Elsevier, vol. 294(C).
    6. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
    7. Wei, Wei & Liu, Feng & Wang, Jianhui & Chen, Laijun & Mei, Shengwei & Yuan, Tiejiang, 2016. "Robust environmental-economic dispatch incorporating wind power generation and carbon capture plants," Applied Energy, Elsevier, vol. 183(C), pages 674-684.
    8. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    9. Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Yuan, Xiangzhou, 2021. "Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle," Energy, Elsevier, vol. 215(PB).
    10. Qasem, Naef A.A. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "An efficient CO2 adsorptive storage using MOF-5 and MOF-177," Applied Energy, Elsevier, vol. 210(C), pages 317-326.
    11. Zhang, Lu & Li, Yuan & Zhou, Hongcang, 2018. "Preparation and characterization of DBU-loaded MCM-41 for adsorption of CO2," Energy, Elsevier, vol. 149(C), pages 414-423.
    12. Wang, Ke & Zhou, Zhongyun & Zhao, Pengfei & Yin, Zeguang & Su, Zhen & Sun, Ji, 2017. "Molten sodium-fluoride-promoted high-performance Li4SiO4-based CO2 sorbents at low CO2 concentrations," Applied Energy, Elsevier, vol. 204(C), pages 403-412.
    13. Xu, Weicong & Deng, Shuai & Su, Wen & Zhang, Ying & Zhao, Li & Yu, Zhixin, 2018. "How to approach Carnot cycle via zeotropic working fluid: Research methodology and case study," Energy, Elsevier, vol. 144(C), pages 576-586.
    14. Amna Abdeljaoued & Nausika Querejeta & Inés Durán & Noelia Álvarez-Gutiérrez & Covadonga Pevida & Mohamed Hachemi Chahbani, 2018. "Preparation and Evaluation of a Coconut Shell-Based Activated Carbon for CO 2 /CH 4 Separation," Energies, MDPI, vol. 11(7), pages 1-14, July.
    15. Kyle McGaughy & M. Toufiq Reza, 2020. "Systems Analysis of SO 2 -CO 2 Co-Capture from a Post-Combustion Coal-Fired Power Plant in Deep Eutectic Solvents," Energies, MDPI, vol. 13(2), pages 1-15, January.
    16. Rongrong Zhai & Hongtao Liu & Hao Wu & Hai Yu & Yongping Yang, 2018. "Analysis of Integration of MEA-Based CO 2 Capture and Solar Energy System for Coal-Based Power Plants Based on Thermo-Economic Structural Theory," Energies, MDPI, vol. 11(5), pages 1-30, May.
    17. Kim, Junghwan & Lee, Jisook & Lee, Yunje & Kim, Huiyong & Kim, Eunseok & Lee, Kwang Soon, 2019. "Evaluation of aqueous polyamines as CO2 capture solvents," Energy, Elsevier, vol. 187(C).
    18. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    19. de Kleijne, Kiane & James, Jebin & Hanssen, Steef V. & van Zelm, Rosalie, 2020. "Environmental benefits of urea production from basic oxygen furnace gas," Applied Energy, Elsevier, vol. 270(C).
    20. Khakpoor, Nima & Mostafavi, Ehsan & Mahinpey, Nader & De la Hoz Siegler, Hector, 2019. "Oxygen transport capacity and kinetic study of ilmenite ores for methane chemical-looping combustion," Energy, Elsevier, vol. 169(C), pages 329-337.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221026748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.