Screening of conventional ionic liquids for carbon dioxide capture and separation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2015.03.071
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Yingying & Ji, Xiaoyan & Lu, Xiaohua, 2014. "Energy consumption analysis for CO2 separation from gas mixtures," Applied Energy, Elsevier, vol. 130(C), pages 237-243.
- Jennifer L. Anthony & Sudhir N.V.K. Aki & Edward J. Maginn & Joan F. Brennecke, 2004. "Feasibility of using ionic liquids for carbon dioxide capture," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 4(1/2), pages 105-115.
- Xie, Yujiao & Zhang, Yingying & Lu, Xiaohua & Ji, Xiaoyan, 2014. "Energy consumption analysis for CO2 separation using imidazolium-based ionic liquids," Applied Energy, Elsevier, vol. 136(C), pages 325-335.
- Pellegrini, G. & Strube, R. & Manfrida, G., 2010. "Comparative study of chemical absorbents in postcombustion CO2 capture," Energy, Elsevier, vol. 35(2), pages 851-857.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiao, Min & Liu, Helei & Gao, Hongxia & Olson, Wilfred & Liang, Zhiwu, 2019. "CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine," Applied Energy, Elsevier, vol. 235(C), pages 311-319.
- Guo, Liheng & Ding, Yudong & Liao, Qiang & Zhu, Xun & Wang, Hong, 2022. "A new heat supply strategy for CO2 capture process based on the heat recovery from turbine exhaust steam in a coal-fired power plant," Energy, Elsevier, vol. 239(PA).
- Yu, Bing & Yu, Hai & Li, Kangkang & Yang, Qi & Zhang, Rui & Li, Lichun & Chen, Zuliang, 2017. "Characterisation and kinetic study of carbon dioxide absorption by an aqueous diamine solution," Applied Energy, Elsevier, vol. 208(C), pages 1308-1317.
- N.Borhani, Tohid & Wang, Meihong, 2019. "Role of solvents in CO2 capture processes: The review of selection and design methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Zhang, Yingying & Ji, Xiaoyan & Lu, Xiaohua, 2018. "Choline-based deep eutectic solvents for CO2 separation: Review and thermodynamic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 436-455.
- Rongrong Zhai & Hongtao Liu & Hao Wu & Hai Yu & Yongping Yang, 2018. "Analysis of Integration of MEA-Based CO 2 Capture and Solar Energy System for Coal-Based Power Plants Based on Thermo-Economic Structural Theory," Energies, MDPI, vol. 11(5), pages 1-30, May.
- Kim, Junghwan & Lee, Jisook & Lee, Yunje & Kim, Huiyong & Kim, Eunseok & Lee, Kwang Soon, 2019. "Evaluation of aqueous polyamines as CO2 capture solvents," Energy, Elsevier, vol. 187(C).
- Ibrahim, Muna Hassan & Hayyan, Maan & Hashim, Mohd Ali & Hayyan, Adeeb, 2017. "The role of ionic liquids in desulfurization of fuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1534-1549.
- Kazmi, Bilal & Haider, Junaid & Ammar Taqvi, Syed Ali & Qyyum, Muhammad Abdul & Ali, Syed Imran & Hussain Awan, Zahoor Ul & Lim, Hankwon & Naqvi, Muhammad & Naqvi, Salman Raza, 2022. "Thermodynamic and economic assessment of cyano functionalized anion based ionic liquid for CO2 removal from natural gas integrated with, single mixed refrigerant liquefaction process for clean energy," Energy, Elsevier, vol. 239(PE).
- Wang, Honglin & Ma, Chunyan & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Improving high-pressure water scrubbing through process integration and solvent selection for biogas upgrading," Applied Energy, Elsevier, vol. 276(C).
- Wang, Tao & Yu, Wei & Le Moullec, Yann & Liu, Fei & Xiong, Yili & He, Hui & Lu, Jiahui & Hsu, Emily & Fang, Mengxiang & Luo, Zhongyang, 2017. "Solvent regeneration by novel direct non-aqueous gas stripping process for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 205(C), pages 23-32.
- Zhang, Yingying & Ji, Xiaoyan & Xie, Yujiao & Lu, Xiaohua, 2018. "Thermodynamic analysis of CO2 separation from biogas with conventional ionic liquids," Applied Energy, Elsevier, vol. 217(C), pages 75-87.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Yuan, Xiangzhou, 2021. "Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle," Energy, Elsevier, vol. 215(PB).
- Ma, Chunyan & Xie, Yujiao & Ji, Xiaoyan & Liu, Chang & Lu, Xiaohua, 2018. "Modeling, simulation and evaluation of biogas upgrading using aqueous choline chloride/urea," Applied Energy, Elsevier, vol. 229(C), pages 1269-1283.
- Xie, Yujiao & Björkmalm, Johanna & Ma, Chunyan & Willquist, Karin & Yngvesson, Johan & Wallberg, Ola & Ji, Xiaoyan, 2018. "Techno-economic evaluation of biogas upgrading using ionic liquids in comparison with industrially used technology in Scandinavian anaerobic digestion plants," Applied Energy, Elsevier, vol. 227(C), pages 742-750.
- Xu, Ming-Xin & Wu, Hai-Bo & Wu, Ya-Chang & Wang, Han-Xiao & Ouyang, Hao-Dong & Lu, Qiang, 2021. "Design and evaluation of a novel system for the flue gas compression and purification from the oxy-fuel combustion process," Applied Energy, Elsevier, vol. 285(C).
- Huang, Hong & Peters, Ralf & Samsun, Remzi Can & Stolten, Detlef & He, Chang & Zhou, Xiantai, 2024. "A novel intercooling carbon dioxide capture process using ionic liquids with ultra-low energy consumption," Energy, Elsevier, vol. 301(C).
- Cheng, Jun & Wang, Yali & Liu, Niu & Hou, Wen & Zhou, Junhu, 2020. "Enhanced CO2 selectivity of mixed matrix membranes with carbonized Zn/Co zeolitic imidazolate frameworks," Applied Energy, Elsevier, vol. 272(C).
- Zhao, Ruikai & Deng, Shuai & Liu, Yinan & Zhao, Qing & He, Junnan & Zhao, Li, 2017. "Carbon pump: Fundamental theory and applications," Energy, Elsevier, vol. 119(C), pages 1131-1143.
- Xie, Yujiao & Ma, Chunyan & Lu, Xiaohua & Ji, Xiaoyan, 2016. "Evaluation of imidazolium-based ionic liquids for biogas upgrading," Applied Energy, Elsevier, vol. 175(C), pages 69-81.
- Zhang, Yingying & Ji, Xiaoyan & Lu, Xiaohua, 2018. "Choline-based deep eutectic solvents for CO2 separation: Review and thermodynamic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 436-455.
- Zhang, Yingying & Ji, Xiaoyan & Xie, Yujiao & Lu, Xiaohua, 2018. "Thermodynamic analysis of CO2 separation from biogas with conventional ionic liquids," Applied Energy, Elsevier, vol. 217(C), pages 75-87.
- Xiao, Min & Liu, Helei & Gao, Hongxia & Olson, Wilfred & Liang, Zhiwu, 2019. "CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine," Applied Energy, Elsevier, vol. 235(C), pages 311-319.
- Zenon Ziobrowski & Adam Rotkegel, 2021. "Feasibility study of CO2/N2 separation intensification on supported ionic liquid membranes by commonly used impregnation methods," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(2), pages 297-312, April.
- Ibrahim, Muna Hassan & Hayyan, Maan & Hashim, Mohd Ali & Hayyan, Adeeb, 2017. "The role of ionic liquids in desulfurization of fuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1534-1549.
- Zhao, Zhijun & Xing, Xiao & Tang, Zhigang & Zheng, Yong & Fei, Weiyang & Liang, Xiangfeng & Ataeivarjovi, E. & Guo, Dong, 2018. "Experiment and simulation study of CO2 solubility in dimethyl carbonate, 1-octyl-3-methylimidazolium tetrafluoroborate and their mixtures," Energy, Elsevier, vol. 143(C), pages 35-42.
- Yaser Khojasteh Salkuyeh & Thomas A. Adams II, 2015. "Co-Production of Olefins, Fuels, and Electricity from Conventional Pipeline Gas and Shale Gas with Near-Zero CO 2 Emissions. Part I: Process Development and Technical Performance," Energies, MDPI, vol. 8(5), pages 1-23, April.
- Chmielniak, Tadeusz & Lepszy, Sebastian & Wójcik, Katarzyna, 2012. "Analysis of gas turbine combined heat and power system for carbon capture installation of coal-fired power plant," Energy, Elsevier, vol. 45(1), pages 125-133.
- Theunissen, Ton & Golombok, Mike & Brouwers, J.J.H. (Bert) & Bansal, Gagan & van Benthum, Rob, 2011. "Liquid CO2 droplet extraction from gases," Energy, Elsevier, vol. 36(5), pages 2961-2967.
- Hongtian Ge & Andrew J. Furlong & Scott Champagne & Robin W. Hughes & Jan B. Haelssig & Arturo Macchi, 2024. "Modelling and Design of a Novel Integrated Heat Exchange Reactor for Oxy-Fuel Combustion Flue Gas Deoxygenation," Energies, MDPI, vol. 17(6), pages 1-13, March.
- Zhang, Minkai & Guo, Yincheng, 2017. "Regeneration energy analysis of NH3-based CO2 capture process integrated with a flow-by capacitive ion separation device," Energy, Elsevier, vol. 125(C), pages 178-185.
- Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
More about this item
Keywords
CO2 separation; CO2 capture; Ionic liquids; Screening; Energy consumption;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1160-1170. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.