IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v190y2017icp1068-1080.html
   My bibliography  Save this article

Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column

Author

Listed:
  • Chu, Fengming
  • Yang, Lijun
  • Du, Xiaoze
  • Yang, Yongping

Abstract

The CO2 absorption in the bubble column using ammonia solution has been proved a viable approach for the post-combustion CO2 capture, so it is of benefit to the energy saving of CO2 absorption and the bubble column design to clarify the impacts of the geometry and running parameters on the mass transfer and energy consumption of CO2 capture. Based on the representative elementary volume method, a computational model of both the CO2 capture and ammonia slip was developed and validated by the experimental data, by which the hydrodynamic characteristics, mass transfer performances and energy consumption in CO2 capture process were investigated. The results show that at the same inlet velocity of CO2, the higher height-to-diameter ratio of the column can improve the mass transfer performances of both the CO2 capture and ammonia escape. What’s more, the energy consumption decreases with the reduced orifice number on the bottom of column, and increases as the orifice size increases. An optimal height-to-diameter ratio of 5.76 is recommended when taking both the energy consumption and CO2 removal efficiency into consideration. This work can provide the viable guidance and suggestions of the better mass transfer performance and energy saving for the industrial application of CO2 capture, as well as the inhibition of ammonia escape.

Suggested Citation

  • Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
  • Handle: RePEc:eee:appene:v:190:y:2017:i:c:p:1068-1080
    DOI: 10.1016/j.apenergy.2017.01.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917300351
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.01.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    2. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2016. "CO2 capture using MEA (monoethanolamine) aqueous solution in coal-fired power plants: Modeling and optimization of the absorbing columns," Energy, Elsevier, vol. 109(C), pages 495-505.
    3. Li, Kangkang & Yu, Hai & Qi, Guojie & Feron, Paul & Tade, Moses & Yu, Jingwen & Wang, Shujuan, 2015. "Rate-based modelling of combined SO2 removal and NH3 recycling integrated with an aqueous NH3-based CO2 capture process," Applied Energy, Elsevier, vol. 148(C), pages 66-77.
    4. Ma, Shuangchen & Chen, Gongda & Zhu, Sijie & Han, Tingting & Yu, Weijing, 2016. "Mass transfer of ammonia escape and CO2 absorption in CO2 capture using ammonia solution in bubbling reactor," Applied Energy, Elsevier, vol. 162(C), pages 354-362.
    5. Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.
    6. Zhao, Bingtao & Su, Yaxin & Tao, Wenwen, 2014. "Mass transfer performance of CO2 capture in rotating packed bed: Dimensionless modeling and intelligent prediction," Applied Energy, Elsevier, vol. 136(C), pages 132-142.
    7. Shakerian, Farid & Kim, Ki-Hyun & Szulejko, Jan E. & Park, Jae-Woo, 2015. "A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 148(C), pages 10-22.
    8. Hanak, Dawid P. & Biliyok, Chechet & Manovic, Vasilije, 2015. "Efficiency improvements for the coal-fired power plant retrofit with CO2 capture plant using chilled ammonia process," Applied Energy, Elsevier, vol. 151(C), pages 258-272.
    9. Zhao, Bingtao & Su, Yaxin, 2014. "Process effect of microalgal-carbon dioxide fixation and biomass production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 121-132.
    10. Li, Bao-Hong & Zhang, Nan & Smith, Robin, 2016. "Simulation and analysis of CO2 capture process with aqueous monoethanolamine solution," Applied Energy, Elsevier, vol. 161(C), pages 707-717.
    11. Bonalumi, Davide & Giuffrida, Antonio, 2016. "Investigations of an air-blown integrated gasification combined cycle fired with high-sulphur coal with post-combustion carbon capture by aqueous ammonia," Energy, Elsevier, vol. 117(P2), pages 439-449.
    12. Ma, Shuangchen & Chen, Gongda & Zhu, Sijie & Wen, Jiaqi & Gao, Ran & Ma, Lan & Chai, Jin, 2016. "Experimental study of mixed additive of Ni(II) and piperazine on ammonia escape in CO2 capture using ammonia solution," Applied Energy, Elsevier, vol. 169(C), pages 597-606.
    13. Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Huiyao & Chu, Fengming & Yang, Lijun & Ola, Oluwafunmilola & Du, Xiaoze & Yang, Yongping, 2018. "Enhanced photocatalytic reduction of carbon dioxide in optical fiber monolith reactor with transparent glass balls," Applied Energy, Elsevier, vol. 230(C), pages 1403-1413.
    2. Wang, Fu & Zhao, Jun & Miao, He & Zhao, Jiapei & Zhang, Houcheng & Yuan, Jinliang & Yan, Jinyue, 2018. "Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process," Applied Energy, Elsevier, vol. 230(C), pages 734-749.
    3. Zhang, Xiaowen & Zhang, Xin & Liu, Helei & Li, Wensheng & Xiao, Min & Gao, Hongxia & Liang, Zhiwu, 2017. "Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts," Applied Energy, Elsevier, vol. 202(C), pages 673-684.
    4. Song, Chunfeng & Liu, Qingling & Ji, Na & Deng, Shuai & Zhao, Jun & Kitamura, Yutaka, 2017. "Natural gas purification by heat pump assisted MEA absorption process," Applied Energy, Elsevier, vol. 204(C), pages 353-361.
    5. Xu, Yin & Jin, Baosheng & Zhao, Yongling & Hu, Eric J. & Chen, Xiaole & Li, Xiaochuan, 2018. "Numerical simulation of aqueous ammonia-based CO2 absorption in a sprayer tower: An integrated model combining gas-liquid hydrodynamics and chemistry," Applied Energy, Elsevier, vol. 211(C), pages 318-333.
    6. Wen, Chuang & Karvounis, Nikolas & Walther, Jens Honore & Yan, Yuying & Feng, Yuqing & Yang, Yan, 2019. "An efficient approach to separate CO2 using supersonic flows for carbon capture and storage," Applied Energy, Elsevier, vol. 238(C), pages 311-319.
    7. Rashidi, Hamed & Rasouli, Parvaneh & Azimi, Hossein, 2022. "A green vapor suppressing agent for aqueous ammonia carbon dioxide capture solvent: Microcontactor mass transfer study," Energy, Elsevier, vol. 244(PA).
    8. Chu, Fengming & Gao, Qianhong & Li, Shang & Yang, Guoan & Luo, Yan, 2020. "Mass transfer characteristic of ammonia escape and energy penalty analysis in the regeneration process," Applied Energy, Elsevier, vol. 258(C).
    9. Zhang, Guojie & Li, Yunpeng & Jin, Zunlong & Dykas, Sławomir & Cai, Xiaoshu, 2024. "A novel carbon dioxide capture technology (CCT) based on non-equilibrium condensation characteristics: Numerical modelling, nozzle design and structure optimization," Energy, Elsevier, vol. 286(C).
    10. Wang, Lidong & Yu, Songhua & Li, Qiangwei & Zhang, Yifeng & An, Shanlong & Zhang, Shihan, 2018. "Performance of sulfolane/DETA hybrids for CO2 absorption: Phase splitting behavior, kinetics and thermodynamics," Applied Energy, Elsevier, vol. 228(C), pages 568-576.
    11. Chen, Jianan & Huang, Zhu, 2022. "Spontaneous condensation of carbon dioxide in flue gas at supersonic state," Energy, Elsevier, vol. 254(PC).
    12. Yifang Liu & Fengming Chu & Lijun Yang & Xiaoze Du & Yongping Yang, 2018. "CO2 absorption characteristics in a random packed column with various geometric structures and working conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(1), pages 120-132, February.
    13. Song, Chunfeng & Xie, Meilian & Qiu, Yiting & Liu, Qingling & Sun, Luchang & Wang, Kailiang & Kansha, Yasuki, 2019. "Integration of CO2 absorption with biological transformation via using rich ammonia solution as a nutrient source for microalgae cultivation," Energy, Elsevier, vol. 179(C), pages 618-627.
    14. Cao, Bowen & Yin, Yonggao & Xu, Guoying & Cheng, Xiaosong & Li, Wenzhang & Ji, Qiang & Chen, Wanhe, 2023. "A proposed method of bubble absorption-based deep dehumidification using the ionic liquid for low-humidity industrial environments with experimental performance," Applied Energy, Elsevier, vol. 348(C).
    15. Marcin Cichosz & Urszula Kiełkowska & Sławomir Łazarski & Łukasz Kiedzik & Marian Szkudlarek & Kazimierz Skowron & Beata Kowalska & Damian Żurawski, 2022. "Influence of Ammonia Concentration on Solvay Soda Process Parameters and Associated Environmental and Energetic Effects," Energies, MDPI, vol. 15(22), pages 1-19, November.
    16. Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang & Yang, Yan, 2023. "High-pressure supersonic carbon dioxide (CO2) separation benefiting carbon capture, utilisation and storage (CCUS) technology," Applied Energy, Elsevier, vol. 339(C).
    17. Chu, Fengming & Liu, Yifang & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Ammonia escape mass transfer and heat transfer characteristics of CO2 absorption in packed absorbing column," Applied Energy, Elsevier, vol. 205(C), pages 1596-1604.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fu & Zhao, Jun & Miao, He & Zhao, Jiapei & Zhang, Houcheng & Yuan, Jinliang & Yan, Jinyue, 2018. "Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process," Applied Energy, Elsevier, vol. 230(C), pages 734-749.
    2. Chu, Fengming & Gao, Qianhong & Li, Shang & Yang, Guoan & Luo, Yan, 2020. "Mass transfer characteristic of ammonia escape and energy penalty analysis in the regeneration process," Applied Energy, Elsevier, vol. 258(C).
    3. Chu, Fengming & Liu, Yifang & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Ammonia escape mass transfer and heat transfer characteristics of CO2 absorption in packed absorbing column," Applied Energy, Elsevier, vol. 205(C), pages 1596-1604.
    4. Ma, Shuangchen & Chen, Gongda & Zhu, Sijie & Wen, Jiaqi & Gao, Ran & Ma, Lan & Chai, Jin, 2016. "Experimental study of mixed additive of Ni(II) and piperazine on ammonia escape in CO2 capture using ammonia solution," Applied Energy, Elsevier, vol. 169(C), pages 597-606.
    5. Xu, Yin & Jin, Baosheng & Zhao, Yongling & Hu, Eric J. & Chen, Xiaole & Li, Xiaochuan, 2018. "Numerical simulation of aqueous ammonia-based CO2 absorption in a sprayer tower: An integrated model combining gas-liquid hydrodynamics and chemistry," Applied Energy, Elsevier, vol. 211(C), pages 318-333.
    6. N.Borhani, Tohid & Wang, Meihong, 2019. "Role of solvents in CO2 capture processes: The review of selection and design methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Wang, Fu & Zhao, Jun & Zhang, Houcheng & Miao, He & Zhao, Jiapei & Wang, Jiatang & Yuan, Jinliang & Yan, Jinyue, 2018. "Efficiency evaluation of a coal-fired power plant integrated with chilled ammonia process using an absorption refrigerator," Applied Energy, Elsevier, vol. 230(C), pages 267-276.
    8. Yifang Liu & Fengming Chu & Lijun Yang & Xiaoze Du & Yongping Yang, 2018. "CO2 absorption characteristics in a random packed column with various geometric structures and working conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(1), pages 120-132, February.
    9. Wu, Xiao M. & Qin, Zhen & Yu, Yun S. & Zhang, Zao X., 2018. "Experimental and numerical study on CO2 absorption mass transfer enhancement for a diameter-varying spray tower," Applied Energy, Elsevier, vol. 225(C), pages 367-379.
    10. Ma, Shuangchen & Chen, Gongda & Zhu, Sijie & Han, Tingting & Yu, Weijing, 2016. "Mass transfer of ammonia escape and CO2 absorption in CO2 capture using ammonia solution in bubbling reactor," Applied Energy, Elsevier, vol. 162(C), pages 354-362.
    11. Qi, Guojie & Wang, Shujuan, 2017. "Thermodynamic modeling of NH3-CO2-SO2-K2SO4-H2O system for combined CO2 and SO2 capture using aqueous NH3," Applied Energy, Elsevier, vol. 191(C), pages 549-558.
    12. Qi, Guojie & Wang, Shujuan, 2017. "Experimental study and rate-based modeling on combined CO2 and SO2 absorption using aqueous NH3 in packed column," Applied Energy, Elsevier, vol. 206(C), pages 1532-1543.
    13. Cheng, Chin-hung & Li, Kangkang & Yu, Hai & Jiang, Kaiqi & Chen, Jian & Feron, Paul, 2018. "Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions," Applied Energy, Elsevier, vol. 211(C), pages 1030-1038.
    14. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    15. Yi, Qun & Wu, Guo-sheng & Gong, Min-hui & Huang, Yi & Feng, Jie & Hao, Yan-hong & Li, Wen-ying, 2017. "A feasibility study for CO2 recycle assistance with coke oven gas to synthetic natural gas," Applied Energy, Elsevier, vol. 193(C), pages 149-161.
    16. Míguez, José Luis & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Gómez, Miguel Ángel, 2020. "Biological systems for CCS: Patent review as a criterion for technological development," Applied Energy, Elsevier, vol. 257(C).
    17. Zevenhoven, Ron & Legendre, Daniel & Said, Arshe & Järvinen, Mika, 2019. "Carbon dioxide dissolution and ammonia losses in bubble columns for precipitated calcium carbonate (PCC) production," Energy, Elsevier, vol. 175(C), pages 1121-1129.
    18. Chen, S.J. & Zhu, M. & Fu, Y. & Huang, Y.X. & Tao, Z.C. & Li, W.L., 2017. "Using 13X, LiX, and LiPdAgX zeolites for CO2 capture from post-combustion flue gas," Applied Energy, Elsevier, vol. 191(C), pages 87-98.
    19. Jiang, Kaiqi & Li, Kangkang & Yu, Hai & Chen, Zuliang & Wardhaugh, Leigh & Feron, Paul, 2017. "Advancement of ammonia based post-combustion CO2 capture using the advanced flash stripper process," Applied Energy, Elsevier, vol. 202(C), pages 496-506.
    20. Huang, Weijia & Zheng, Danxing & Xie, Hui & Li, Yun & Wu, Weize, 2019. "Hybrid physical-chemical absorption process for carbon capture with strategy of high-pressure absorption/medium-pressure desorption," Applied Energy, Elsevier, vol. 239(C), pages 928-937.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:190:y:2017:i:c:p:1068-1080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.