Evaluation of aqueous polyamines as CO2 capture solvents
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.115908
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- El Hadri, Nabil & Quang, Dang Viet & Goetheer, Earl L.V. & Abu Zahra, Mohammad R.M., 2017. "Aqueous amine solution characterization for post-combustion CO2 capture process," Applied Energy, Elsevier, vol. 185(P2), pages 1433-1449.
- Zhang, Yingying & Ji, Xiaoyan & Xie, Yujiao & Lu, Xiaohua, 2016. "Screening of conventional ionic liquids for carbon dioxide capture and separation," Applied Energy, Elsevier, vol. 162(C), pages 1160-1170.
- Zhang, Rui & Yang, Qi & Yu, Bing & Yu, Hai & Liang, Zhiwu, 2018. "Toward to efficient CO2 capture solvent design by analyzing the effect of substituent type connected to N-atom," Energy, Elsevier, vol. 144(C), pages 1064-1072.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gautam, Ashish & Mondal, Monoj Kumar, 2024. "Post-combustion CO2 absorption-desorption performance of novel aqueous binary amine blend of Hexamethylenediamine (HMDA) and 2-Dimethylaminoethanol (DMAE)," Energy, Elsevier, vol. 296(C).
- Yang, Ming-Ke & Han, Yu & Zou, En-Bao & Chen, Wan & Peng, Xiao-Wan & Dong, Bao-Can & Sun, Chang-Yu & Liu, Bei & Chen, Guang-Jin, 2020. "Separation of IGCC syngas by using ZIF-8/dimethylacetamide slurry with high CO2 sorption capacity and sorption speed but low sorption heat," Energy, Elsevier, vol. 201(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Tao & Yu, Wei & Le Moullec, Yann & Liu, Fei & Xiong, Yili & He, Hui & Lu, Jiahui & Hsu, Emily & Fang, Mengxiang & Luo, Zhongyang, 2017. "Solvent regeneration by novel direct non-aqueous gas stripping process for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 205(C), pages 23-32.
- Yu, Bing & Yu, Hai & Li, Kangkang & Yang, Qi & Zhang, Rui & Li, Lichun & Chen, Zuliang, 2017. "Characterisation and kinetic study of carbon dioxide absorption by an aqueous diamine solution," Applied Energy, Elsevier, vol. 208(C), pages 1308-1317.
- Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
- Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
- Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
- Hu, Hangtian & Fang, Mengxiang & Liu, Fei & Wang, Tao & Xia, Zhixiang & Zhang, Wei & Ge, Chunliang & Yuan, Jingjuan, 2022. "Novel alkanolamine-based biphasic solvent for CO2 capture with low energy consumption and phase change mechanism analysis," Applied Energy, Elsevier, vol. 324(C).
- Han, Siyu & Meng, Yuan & Aihemaiti, Aikelaimu & Gao, Yuchen & Ju, Tongyao & Xiang, Honglin & Jiang, Jianguo, 2022. "Biogas upgrading with various single and blended amines solutions: Capacities and kinetics," Energy, Elsevier, vol. 253(C).
- Slavu Nela & Dinca Cristian, 2017. "Economical aspects of the CCS technology integration in the conventional power plant," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 11(1), pages 168-180, July.
- Sang‐Jun Han & Jung‐Ho Wee, 2021. "Comparison of CO2 absorption performance between methyl‐di‐ ethanolamine and tri‐ethanolamine solution systems and its analysis in terms of amine molecules," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 445-460, June.
- Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.
- Ali Saleh Bairq, Zain & Gao, Hongxia & Huang, Yufei & Zhang, Haiyan & Liang, Zhiwu, 2019. "Enhancing CO2 desorption performance in rich MEA solution by addition of SO42−/ZrO2/SiO2 bifunctional catalyst," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Rongrong Zhai & Hongtao Liu & Hao Wu & Hai Yu & Yongping Yang, 2018. "Analysis of Integration of MEA-Based CO 2 Capture and Solar Energy System for Coal-Based Power Plants Based on Thermo-Economic Structural Theory," Energies, MDPI, vol. 11(5), pages 1-30, May.
- Tobiesen, Finn Andrew & Haugen, Geir & Hartono, Ardi, 2018. "A systematic procedure for process energy evaluation for post combustion CO2 capture: Case study of two novel strong bicarbonate-forming solvents," Applied Energy, Elsevier, vol. 211(C), pages 161-173.
- Gautam, Ashish & Mondal, Monoj Kumar, 2024. "Post-combustion CO2 absorption-desorption performance of novel aqueous binary amine blend of Hexamethylenediamine (HMDA) and 2-Dimethylaminoethanol (DMAE)," Energy, Elsevier, vol. 296(C).
- Liu, Sen & Gao, Hongxia & He, Chuan & Liang, Zhiwu, 2019. "Experimental evaluation of highly efficient primary and secondary amines with lower energy by a novel method for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 233, pages 443-452.
- Pereira, Luís M.C. & Vega, Lourdes F., 2018. "A systematic approach for the thermodynamic modelling of CO2-amine absorption process using molecular-based models," Applied Energy, Elsevier, vol. 232(C), pages 273-291.
- Qi, Guojie & Liu, Kun & House, Alan & Salmon, Sonja & Ambedkar, Balraj & Frimpong, Reynolds A. & Remias, Joseph E. & Liu, Kunlei, 2018. "Laboratory to bench-scale evaluation of an integrated CO2 capture system using a thermostable carbonic anhydrase promoted K2CO3 solvent with low temperature vacuum stripping," Applied Energy, Elsevier, vol. 209(C), pages 180-189.
- Fu, Kun & Zheng, Mingzhen & Fu, Dong, 2023. "Low partial pressure CO2 capture in packed tower by EHA+Diglyme water-lean absorbent," Energy, Elsevier, vol. 266(C).
- Madeddu, Claudio & Errico, Massimiliano & Baratti, Roberto, 2018. "Process analysis for the carbon dioxide chemical absorption–regeneration system," Applied Energy, Elsevier, vol. 215(C), pages 532-542.
- N.Borhani, Tohid & Wang, Meihong, 2019. "Role of solvents in CO2 capture processes: The review of selection and design methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
More about this item
Keywords
CO2 capture; CCS; Absorption; Aqueous amine solvent; Solvent screening; WWC;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219315865. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.