IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224027877.html
   My bibliography  Save this article

Improving the energy efficiency of carbon capture process: The thermodynamic insight

Author

Listed:
  • Talei, Saeed
  • Szanyi, Agnes
  • Mizsey, Peter

Abstract

The efficient use of energy is an important challenge in engineering tasks. Even with the end-of-pipe treatment method, the carbon capture process has possibilities to improve its efficiency with heat integration. Since exergy analysis helps detect the most efficient way of energy intensification, exergy investigation based on thermodynamic analysis is carried out to improve energy efficiency. Two cases for exergy destruction calculation can be considered and compared depending on the operation of the capture process: (i) the stand-alone situation, where utilities are applied, and (ii) the total site integration, where sources and sinks are available at every temperature level of the carbon capture process. Besides heat integration, the application of oxyfuel technology can further improve thermodynamic efficiencies reducing the detrimental exergy destruction. Air-combustion exhibits higher exergy destruction compared to oxyfuel-combustion, particularly at high carbon dioxide removal efficiency levels. Heat-integrated configurations nearly double thermodynamic efficiency, especially in the cases of oxyfuel technologies. Therefore, it is recommended that, for the sake of cleaner energy production, both oxyfuel technologies and heat integration should be applied to enhance carbon capture process’ energy efficiency.

Suggested Citation

  • Talei, Saeed & Szanyi, Agnes & Mizsey, Peter, 2024. "Improving the energy efficiency of carbon capture process: The thermodynamic insight," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027877
    DOI: 10.1016/j.energy.2024.133013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224027877
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feyzi, Vafa & Beheshti, Masoud & Gharibi Kharaji, Abolfazl, 2017. "Exergy analysis: A CO2 removal plant using a-MDEA as the solvent," Energy, Elsevier, vol. 118(C), pages 77-84.
    2. Feng, Chao & Zhu, Rong & Wei, Guangsheng & Dong, Kai & Xia, Tao, 2023. "Typical case of CO2 capture in Chinese iron and steel enterprises: Exergy analysis," Applied Energy, Elsevier, vol. 336(C).
    3. Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
    4. Geuzebroek, F.H. & Schneiders, L.H.J.M. & Kraaijveld, G.J.C. & Feron, P.H.M., 2004. "Exergy analysis of alkanolamine-based CO2 removal unit with AspenPlus," Energy, Elsevier, vol. 29(9), pages 1241-1248.
    5. Akinola, Toluleke E. & Bonilla Prado, Phebe L. & Wang, Meihong, 2022. "Experimental studies, molecular simulation and process modelling\simulation of adsorption-based post-combustion carbon capture for power plants: A state-of-the-art review," Applied Energy, Elsevier, vol. 317(C).
    6. Zhao, Ruikai & Deng, Shuai & Liu, Yinan & Zhao, Qing & He, Junnan & Zhao, Li, 2017. "Carbon pump: Fundamental theory and applications," Energy, Elsevier, vol. 119(C), pages 1131-1143.
    7. Nazir, Shareq Mohd & Cloete, Jan Hendrik & Cloete, Schalk & Amini, Shahriar, 2019. "Efficient hydrogen production with CO2 capture using gas switching reforming," Energy, Elsevier, vol. 185(C), pages 372-385.
    8. Li, Yaopeng & Jia, Ming & Kokjohn, Sage L. & Chang, Yachao & Reitz, Rolf D., 2018. "Comprehensive analysis of exergy destruction sources in different engine combustion regimes," Energy, Elsevier, vol. 149(C), pages 697-708.
    9. Wang, Miao & Rahimi, Mohammad & Kumar, Amit & Hariharan, Subrahmaniam & Choi, Wonyoung & Hatton, T. Alan, 2019. "Flue gas CO2 capture via electrochemically mediated amine regeneration: System design and performance," Applied Energy, Elsevier, vol. 255(C).
    10. Cao, Yang & He, Boshu & Ding, Guangchao & Su, Liangbin & Duan, Zhipeng, 2017. "Energy and exergy investigation on two improved IGCC power plants with different CO2 capture schemes," Energy, Elsevier, vol. 140(P1), pages 47-57.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Qilong & Wang, Shuai & Luo, Kun & Mu, Yanfei & Pan, Lu & Fan, Jianren, 2023. "Process modelling and optimization of a 250 MW IGCC system: ASU optimization and thermodynamic analysis," Energy, Elsevier, vol. 282(C).
    2. Kazmi, Bilal & Haider, Junaid & Ammar Taqvi, Syed Ali & Qyyum, Muhammad Abdul & Ali, Syed Imran & Hussain Awan, Zahoor Ul & Lim, Hankwon & Naqvi, Muhammad & Naqvi, Salman Raza, 2022. "Thermodynamic and economic assessment of cyano functionalized anion based ionic liquid for CO2 removal from natural gas integrated with, single mixed refrigerant liquefaction process for clean energy," Energy, Elsevier, vol. 239(PE).
    3. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A D2C algorithm on the natural gas consumption and economic growth: Challenges faced by Germany and Japan," Energy, Elsevier, vol. 219(C).
    4. Zhao, Jun & Fu, Jianxin & Deng, Shuai & Wang, Junyao & Xu, Yaofeng, 2020. "Decoupled thermal-driven absorption-based CO2 capture into heat engine plus carbon pump: A new understanding with the case study," Energy, Elsevier, vol. 210(C).
    5. Xiang, Dong & Xiang, Junjie & Sun, Zhe & Cao, Yan, 2017. "The integrated coke-oven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization," Energy, Elsevier, vol. 140(P1), pages 78-91.
    6. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    7. Zhang, Rui & Cao, Xuewen & Zhang, Xingwang & Yang, Jian & Bian, Jiang, 2024. "Co-benefits of the liquid hydrogen economy and LNG economy: Advances in LNG integrating LH2 production processes," Energy, Elsevier, vol. 301(C).
    8. Xue, Jingjing & Ahmadian, Reza & Jones, Owen, 2020. "Genetic Algorithm in Tidal Range Schemes’ Optimisation," Energy, Elsevier, vol. 200(C).
    9. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Mohammadpour, Hossein & Cord-Ruwisch, Ralf & Pivrikas, Almantas & Ho, Goen, 2022. "Simple energy-efficient electrochemically-driven CO2 scrubbing for biogas upgrading," Renewable Energy, Elsevier, vol. 195(C), pages 274-282.
    11. Sha, Peng & Zheng, Cheng & Wu, Xiao & Shen, Jiong, 2025. "Physics informed integral neural network for dynamic modelling of solvent-based post-combustion CO2 capture process," Applied Energy, Elsevier, vol. 377(PA).
    12. Guo, Juncheng & Tan, Chaohuan & Li, Zhexu & Chen, Bo & Yang, Hanxin & Luo, Rongxiang & Gonzalez-Ayala, Julian & Hernández, A. Calvo, 2024. "New insights into energy conversion mechanism, optimal absorbent selection criteria, and operation strategies of absorption carbon capture systems," Energy, Elsevier, vol. 304(C).
    13. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    14. Jiang, L. & Roskilly, A.P. & Wang, R.Z. & Wang, L.W., 2018. "Analysis on innovative resorption cycle for power and refrigeration cogeneration," Applied Energy, Elsevier, vol. 218(C), pages 10-21.
    15. Wang, Junyao & Sun, Taiwei & Zhao, Jun & Deng, Shuai & Li, Kaixiang & Xu, Yaofeng & Fu, Jianxin, 2019. "Thermodynamic considerations on MEA absorption: Whether thermodynamic cycle could be used as a tool for energy efficiency analysis," Energy, Elsevier, vol. 168(C), pages 380-392.
    16. Khoa, T.D. & Shuhaimi, M. & Nam, H.M., 2012. "Application of three dimensional exergy analysis curves for absorption columns," Energy, Elsevier, vol. 37(1), pages 273-280.
    17. Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Yuan, Xiangzhou, 2021. "Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle," Energy, Elsevier, vol. 215(PB).
    18. Wu, Xiaomei & Mao, Yuanhao & Fan, Huifeng & Sultan, Sayd & Yu, Yunsong & Zhang, Zaoxiao, 2023. "Investigation on the performance of EDA-based blended solvents for electrochemically mediated CO2 capture," Applied Energy, Elsevier, vol. 349(C).
    19. Vlad Mureșan & Mihaela-Ligia Ungureșan & Mihail Abrudean & Honoriu Vălean & Iulia Clitan & Roxana Motorga & Emilian Ceuca & Marius Fișcă, 2021. "AI versus Classic Methods in Modelling Isotopic Separation Processes: Efficiency Comparison," Mathematics, MDPI, vol. 9(23), pages 1-31, November.
    20. Wu, Xiaomei & Fan, Huifeng & Mao, Yuanhao & Sharif, Maimoona & Yu, Yunsong & Zhang, Zaoxiao & Liu, Guangxin, 2022. "Systematic study of an energy efficient MEA-based electrochemical CO2 capture process: From mechanism to practical application," Applied Energy, Elsevier, vol. 327(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.