IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224004146.html
   My bibliography  Save this article

All-climate battery thermal management system integrating units-assembled phase change material module with forced air convection

Author

Listed:
  • Mo, Chongmao
  • Xie, Jiekai
  • Zhang, Guoqing
  • Zou, Zhiyang
  • Yang, Xiaoqing

Abstract

Phase change material (PCM) is widely adopted to construct integrated battery thermal management systems (BTMSs) for all climates. However, integrated BTMSs in cylindrical battery modules remain arduous challenges due to the compact/massive cuboid-shaped PCM module and the curved surface of the cells. Herein, we propose a novel all-climate BTMS integrating units-assembled composite PCM (CPCM) module with force air convection. The CPCM module assembled by sleeve-like CPCM units provides developed airflow channels and enlarged heat transfer surface from 1.17 × 10−3 to 3.63 × 10−3 m2 for enhancing convective heat transfer. Consequently, compared to conventional cuboid-shaped module, the thermal resistance of the units-assembled module is remarkably reduced by 52.0% and 60.1%, and the heat flux is enhanced by 7 times under both cooling and preheating modes. In cooling tests, this BTMS demonstrates superior performance by controlling the temperature and temperature difference below 40.30 and 2.80 °C at 3-C discharge, respectively. In preheating tests, it effectively preheats the battery module from 0 to 10 °C in 302 s with a low temperature difference of 3.82 °C. Furthermore, this units-assembled CPCM module saves 53.8 wt% of the CPCM dosage, and thus the energy density of the battery module is increased from 75.6 to 94.4 Wh·kg−1.

Suggested Citation

  • Mo, Chongmao & Xie, Jiekai & Zhang, Guoqing & Zou, Zhiyang & Yang, Xiaoqing, 2024. "All-climate battery thermal management system integrating units-assembled phase change material module with forced air convection," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224004146
    DOI: 10.1016/j.energy.2024.130642
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224004146
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130642?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Gong & Wang, Zhangzhou & Wang, Xinzhi & He, Yurong, 2022. "All-climate thermal management structure for batteries based on expanded graphite/polymer composite phase change material with a high thermal and electrical conductivity," Applied Energy, Elsevier, vol. 322(C).
    2. Yang, Chen, 2022. "Running battery electric vehicles with extended range: Coupling cost and energy analysis," Applied Energy, Elsevier, vol. 306(PB).
    3. Wang, Qian & Jiang, Bin & Li, Bo & Yan, Yuying, 2016. "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 106-128.
    4. Liang, Lin & Zhao, Yaohua & Diao, Yanhua & Ren, Ruyang & Zhu, Tingting & Li, Yan, 2023. "Experimental investigation of preheating performance of lithium-ion battery modules in electric vehicles enhanced by bending flat micro heat pipe array," Applied Energy, Elsevier, vol. 337(C).
    5. Wang, Yujie & Zhang, Xingchen & Chen, Zonghai, 2022. "Low temperature preheating techniques for Lithium-ion batteries: Recent advances and future challenges," Applied Energy, Elsevier, vol. 313(C).
    6. Jilte, Ravindra & Afzal, Asif & Panchal, Satyam, 2021. "A novel battery thermal management system using nano-enhanced phase change materials," Energy, Elsevier, vol. 219(C).
    7. Zhang, Wencan & Huang, Liansheng & Zhang, Zhongbo & Li, Xingyao & Ma, Ruixin & Ren, Yimao & Wu, Weixiong, 2022. "Non-uniform phase change material strategy for directional mitigation of battery thermal runaway propagation," Renewable Energy, Elsevier, vol. 200(C), pages 1338-1351.
    8. Ren, Ruyang & Zhao, Yaohua & Diao, Yanhua & Liang, Lin, 2022. "Experimental study on preheating thermal management system for lithium-ion battery based on U-shaped micro heat pipe array," Energy, Elsevier, vol. 253(C).
    9. Liang, Lin & Zhao, Yaohua & Diao, Yanhua & Ren, Ruyang & Jing, Heran, 2021. "Inclined U-shaped flat microheat pipe array configuration for cooling and heating lithium-ion battery modules in electric vehicles," Energy, Elsevier, vol. 235(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Jiekai & Luo, Yunjun & Zhang, Guoqing & Mo, Chongmao & Yang, Xiaoqing, 2024. "Compact design of integrated battery thermal management systems enabled by bi-functional heating-cooling plates and temperature-equalizing strategy," Renewable Energy, Elsevier, vol. 222(C).
    2. Liang, Lin & Zhao, Yaohua & Diao, Yanhua & Ren, Ruyang & Zhu, Tingting & Li, Yan, 2023. "Experimental investigation of preheating performance of lithium-ion battery modules in electric vehicles enhanced by bending flat micro heat pipe array," Applied Energy, Elsevier, vol. 337(C).
    3. Li, Junqiu & Xue, Qiao & Gao, Zhuo & Liu, Zengcheng & Xiao, Yansheng, 2024. "Frequency varying heating strategy for lithium-ion battery rapid preheating under subzero temperature considering the limitation of on-board current," Applied Energy, Elsevier, vol. 365(C).
    4. Yin, Shubin & Zhao, Wei & Tang, Yong & Li, Hongming & Huang, Haoyi & Ji, Wei & Zhang, Shiwei, 2024. "Ultra-thin vapour chamber based heat dissipation technology for lithium-ion battery," Applied Energy, Elsevier, vol. 358(C).
    5. Cai, Fengyang & Chang, Huawei & Yang, Zhengbo & Tu, Zhengkai, 2024. "Experimental study on self-heating strategy of lithium-ion battery at low temperatures based on bidirectional pulse current," Applied Energy, Elsevier, vol. 354(PB).
    6. Ren, Ruyang & Diao, Yanhua & Zhao, Yaohua & Liang, Lin, 2023. "Experimental study on top liquid-cooling thermal management system based on Z-shaped micro heat pipe array," Energy, Elsevier, vol. 282(C).
    7. Hong Shi & Mengmeng Cheng & Yi Feng & Chenghui Qiu & Caiyue Song & Nenglin Yuan & Chuanzhi Kang & Kaijie Yang & Jie Yuan & Yonghao Li, 2023. "Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations," Energies, MDPI, vol. 16(2), pages 1-23, January.
    8. Wang, Anci & Yin, Xiang & Xin, Zhicheng & Cao, Feng & Wu, Zan & Sundén, Bengt & Xiao, Di, 2023. "Performance optimization of electric vehicle battery thermal management based on the transcritical CO2 system," Energy, Elsevier, vol. 266(C).
    9. Jian, Jiting & Zhang, Zeping & Wang, Shixue & Gong, Jinke, 2023. "Analysis of control strategies in alternating current preheating of lithium-ion cell," Applied Energy, Elsevier, vol. 333(C).
    10. Shuwen Zhou & Yuemin Zhao & Shangyuan Gao, 2021. "Analysis of Heat Dissipation and Preheating Module for Vehicle Lithium Iron Phosphate Battery," Energies, MDPI, vol. 14(19), pages 1-25, September.
    11. Lu, Fenglian & Chen, Weiye & Hu, Shuzhi & Chen, Lei & Sharshir, Swellam W. & Dong, Chuanshuai & Zhang, Lizhi, 2024. "Achieving a smart thermal management for lithium-ion batteries by electrically-controlled crystallization of supercooled calcium chloride hexahydrate solution," Applied Energy, Elsevier, vol. 364(C).
    12. Alkhulaifi, Yousif M. & Qasem, Naef A.A. & Zubair, Syed M., 2022. "Exergoeconomic assessment of the ejector-based battery thermal management system for electric and hybrid-electric vehicles," Energy, Elsevier, vol. 245(C).
    13. Lee, Seunghoon & Lee, Hyoseong & Jun, Yong Joo & Lee, Hoseong, 2024. "Hybrid battery thermal management system coupled with paraffin/copper foam composite phase change material," Applied Energy, Elsevier, vol. 353(PA).
    14. Liang Xu & Shanyi Wang & Lei Xi & Yunlong Li & Jianmin Gao, 2024. "A Review of Thermal Management and Heat Transfer of Lithium-Ion Batteries," Energies, MDPI, vol. 17(16), pages 1-36, August.
    15. Guo, Zengjia & Xu, Qidong & Wang, Yang & Zhao, Tianshou & Ni, Meng, 2023. "Battery thermal management system with heat pipe considering battery aging effect," Energy, Elsevier, vol. 263(PE).
    16. Xiao, Hanxu & E, Jiaqiang & Tian, Sicheng & Huang, Yuxin & Song, Xinyu, 2024. "Effect of composite cooling strategy including phase change material and liquid cooling on the thermal safety performance of a lithium-ion battery pack under thermal runaway propagation," Energy, Elsevier, vol. 295(C).
    17. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    18. Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
    19. Anne Christine Lusk & Xin Li & Qiming Liu, 2023. "If the Government Pays for Full Home-Charger Installation, Would Affordable-Housing and Middle-Income Residents Buy Electric Vehicles?," Sustainability, MDPI, vol. 15(5), pages 1-26, March.
    20. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224004146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.