IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v235y2021ics0360544221016212.html
   My bibliography  Save this article

Improving thermal energy recovery systems using welded plate heat exchangers

Author

Listed:
  • Picón-Núñez, Martín
  • Rumbo-Arias, Jamel E.

Abstract

The aim of this paper is to show the use of welded plate heat exchanger (WPHE) technology in energy recovery systems to reduce the number of units and the potential benefits in revamping projects. The implementation of multifluid units allows for the reduction in the number of units in heat exchanger networks. A thermohydraulic model is developed to determine the unit dimensions that fulfil the required heat duty within the pressure drop restrictions. The approach to multifluid cases is demonstrated on a crude oil preheat train that contains a total of 12 heat exchangers. Various options for the simplification of the network structure are analysed but in principle, with the possibility of implementing multifluid structures, two options are analysed, the reduction to seven units and the reduction to three units. The total heat exchanger area using conventional shell and tube exchangers for the original structure is 9350.96 m2, compared to 3598 m2 required by the proposed multi-stream arrangement. An additional revamping projection consisting of the direct replacing of the original exchangers with WPHE technology using the same installed area, shows a potential energy reduction of 25% and a payback of 1.6 years.

Suggested Citation

  • Picón-Núñez, Martín & Rumbo-Arias, Jamel E., 2021. "Improving thermal energy recovery systems using welded plate heat exchangers," Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016212
    DOI: 10.1016/j.energy.2021.121373
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221016212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nguyen, Tuong-Van & Barbosa, Yuri M. & da Silva, Julio A.M. & de Oliveira Junior, Silvio, 2019. "A novel methodology for the design and optimisation of oil and gas offshore platforms," Energy, Elsevier, vol. 185(C), pages 158-175.
    2. Leonid Tovazhnyanskyy & Jiří Jaromir Klemeš & Petro Kapustenko & Olga Arsenyeva & Olexandr Perevertaylenko & Pavlo Arsenyev, 2020. "Optimal Design of Welded Plate Heat Exchanger for Ammonia Synthesis Column: An Experimental Study with Mathematical Optimisation," Energies, MDPI, vol. 13(11), pages 1-18, June.
    3. Arsenyeva, Olga P. & Tovazhnyansky, Leonid L. & Kapustenko, Petro O. & Khavin, Gennadiy L., 2011. "Optimal design of plate-and-frame heat exchangers for efficient heat recovery in process industries," Energy, Elsevier, vol. 36(8), pages 4588-4598.
    4. Akpomiemie, Mary O. & Smith, Robin, 2016. "Retrofit of heat exchanger networks with heat transfer enhancement based on an area ratio approach," Applied Energy, Elsevier, vol. 165(C), pages 22-35.
    5. Panjeshahi, Mohammad Hassan & Tahouni, Nassim, 2008. "Pressure drop optimisation in debottlenecking of heat exchanger networks," Energy, Elsevier, vol. 33(6), pages 942-951.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Nianqi & Klemeš, Jiří Jaromír & Sunden, Bengt & Wu, Zan & Wang, Qiuwang & Zeng, Min, 2022. "Heat exchanger network synthesis considering detailed thermal-hydraulic performance: Methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Cheng, Xianda & Zheng, Haoran & Dong, Wei & Yang, Xuesen, 2023. "Performance prediction of marine intercooled cycle gas turbine based on expanded similarity parameters," Energy, Elsevier, vol. 265(C).
    3. Li, Nianqi & Klemeš, Jiří Jaromír & Sunden, Bengt & Wang, Qiuwang & Zeng, Min, 2022. "Heat exchanger network optimisation considering different shell-side flow arrangements," Energy, Elsevier, vol. 261(PA).
    4. Varbanov, Petar Sabev & Wang, Bohong & Ocłoń, Paweł & Radziszewska-Zielina, Elżbieta & Ma, Ting & Klemeš, Jiří Jaromír & Jia, Xuexiu, 2023. "Efficiency measures for energy supply and use aiming for a clean circular economy," Energy, Elsevier, vol. 283(C).
    5. Wang, Bohong & Arsenyeva, Olga & Zeng, Min & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2022. "An advanced Grid Diagram for heat exchanger network retrofit with detailed plate heat exchanger design," Energy, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olga Arsenyeva & Leonid Tovazhnyanskyy & Petro Kapustenko & Jiří Jaromír Klemeš & Petar Sabev Varbanov, 2023. "Review of Developments in Plate Heat Exchanger Heat Transfer Enhancement for Single-Phase Applications in Process Industries," Energies, MDPI, vol. 16(13), pages 1-28, June.
    2. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2016. "Behaviour of a SPD switchable glazing in an outdoor test cell with heat removal under varying weather conditions," Applied Energy, Elsevier, vol. 180(C), pages 695-706.
    3. Eichhorn Colombo, Konrad W., 2023. "Financial resilience analysis of floating production, storage and offloading plant operated in Norwegian Arctic region: Case study using inter-/transdisciplinary system dynamics modeling and simulatio," Energy, Elsevier, vol. 268(C).
    4. Andiappan, Viknesh & Ng, Denny K.S. & Tan, Raymond R., 2017. "Design Operability and Retrofit Analysis (DORA) framework for energy systems," Energy, Elsevier, vol. 134(C), pages 1038-1052.
    5. Christian Langner & Elin Svensson & Simon Harvey, 2020. "A Framework for Flexible and Cost-Efficient Retrofit Measures of Heat Exchanger Networks," Energies, MDPI, vol. 13(6), pages 1-24, March.
    6. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Wang, Yufei & Zhan, Shihui & Feng, Xiao, 2015. "Optimization of velocity for energy saving and mitigating fouling in a crude oil preheat train with fixed network structure," Energy, Elsevier, vol. 93(P2), pages 1478-1488.
    8. Lal, Nathan S. & Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R., 2018. "A novel Heat Exchanger Network Bridge Retrofit method using the Modified Energy Transfer Diagram," Energy, Elsevier, vol. 155(C), pages 190-204.
    9. Shen, Suping & Cai, Wenjian & Wang, Xinli & Wu, Qiong & Yon, Haoren, 2017. "Investigation of liquid desiccant regenerator with fixed-plate heat recovery system," Energy, Elsevier, vol. 137(C), pages 172-182.
    10. Liu, Pu & Cui, Guomin & Xiao, Yuan & Chen, Jiaxing, 2018. "A new heuristic algorithm with the step size adjustment strategy for heat exchanger network synthesis," Energy, Elsevier, vol. 143(C), pages 12-24.
    11. Chin, Hon Huin & Wang, Bohong & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Zeng, Min & Wang, Qiu-Wang, 2020. "Long-term investment and maintenance planning for heat exchanger network retrofit," Applied Energy, Elsevier, vol. 279(C).
    12. Pan, Ming & Smith, Robin & Bulatov, Igor, 2013. "A novel optimization approach of improving energy recovery in retrofitting heat exchanger network with exchanger details," Energy, Elsevier, vol. 57(C), pages 188-200.
    13. Liaw, Kim Leong & Ong, Khai Chuin & Mohd Ali Zar, Muhammad Aliff B. & Lai, Wen Kang & Muhammad, M. Fadhli B. & Firmansyah, & Kurnia, Jundika C., 2023. "Experimental and numerical investigation of an innovative non-combustion impulse gas turbine for micro-scale electricity generation," Energy, Elsevier, vol. 266(C).
    14. Pei Lu & Zheng Liang & Xianglong Luo & Yangkai Xia & Jin Wang & Kaihuang Chen & Yingzong Liang & Jianyong Chen & Zhi Yang & Jiacheng He & Ying Chen, 2023. "Design and Optimization of Organic Rankine Cycle Based on Heat Transfer Enhancement and Novel Heat Exchanger: A Review," Energies, MDPI, vol. 16(3), pages 1-34, January.
    15. Kew Hong Chew & Jiří Jaromír Klemeš & Sharifah Rafidah Wan Alwi & Zainuddin Abdul Manan & Andrea Pietro Reverberi, 2015. "Total Site Heat Integration Considering Pressure Drops," Energies, MDPI, vol. 8(2), pages 1-24, February.
    16. Valiani, Saba & Tahouni, Nassim & Panjeshahi, M. Hassan, 2017. "Optimization of pre-combustion capture for thermal power plants using Pinch Analysis," Energy, Elsevier, vol. 119(C), pages 950-960.
    17. Zhang, Bing J. & Tang, Qiao Q. & Zhao, Yue & Chen, Yu Q. & Chen, Qing L. & Floudas, Christodoulos A., 2018. "Multi-level energy integration between units, plants and sites for natural gas industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 1-15.
    18. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    19. Soltani, Hadi & Shafiei, Sirous, 2011. "Heat exchanger networks retrofit with considering pressure drop by coupling genetic algorithm with LP (linear programming) and ILP (integer linear programming) methods," Energy, Elsevier, vol. 36(5), pages 2381-2391.
    20. Zhao, Lei & Cai, Wenjian & Ding, Xudong & Chang, Weichung, 2013. "Model-based optimization for vapor compression refrigeration cycle," Energy, Elsevier, vol. 55(C), pages 392-402.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.