IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics030626192031206x.html
   My bibliography  Save this article

Long-term investment and maintenance planning for heat exchanger network retrofit

Author

Listed:
  • Chin, Hon Huin
  • Wang, Bohong
  • Varbanov, Petar Sabev
  • Klemeš, Jiří Jaromír
  • Zeng, Min
  • Wang, Qiu-Wang

Abstract

Process Optimisation has been the core topic in chemical process industries for decades. However, the performance of the asset strongly influences the production efficiency as well. In the case of Heat Exchanger Network (HEN), the retrofit decisions are often aimed to maximise energy savings and minimise the associated cost. However, the age and performance of heat exchangers have a great influence on the HEN efficiency as well. This study brings innovative retrofit algorithms, integrating exchangers’ lifetime and reliability functions to visualise the benefits of the hybrid process and asset optimisation. The HEN retrofit structures are optimised, considering various heat intensification methods. The model is formulated based on the novel concept of Shifted Retrofit Thermodynamic Grid Diagram (SRTGD). A Mixed Integer Linear Programming (MILP) model is formulated for the investment and maintenance planning. The operating life of the network is discretised into multiple periods, and a decision is made within each period: whether to upgrade the heat exchangers, purchase new heat exchangers – for replacement or adding to the network, maintain the heat exchangers or perform nothing. Two realistic case studies are used to elucidate the application of the method. Under a 20 y planning horizon, the Net Present Value (NPV) obtained are higher than the previous works, i.e. 17% higher for case study 1 with 51% utility savings, and 14% higher for case study 2 with 74% utility savings. The proposed HEN retrofit decisions are proven to be cost-effective. A graphical tool has been developed to track the reliability and maintenance status of the exchangers to provide a significant guide to the economically optimum decisions.

Suggested Citation

  • Chin, Hon Huin & Wang, Bohong & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Zeng, Min & Wang, Qiu-Wang, 2020. "Long-term investment and maintenance planning for heat exchanger network retrofit," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s030626192031206x
    DOI: 10.1016/j.apenergy.2020.115713
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192031206X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115713?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Songsong & Papageorgiou, Lazaros G., 2013. "Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry," Omega, Elsevier, vol. 41(2), pages 369-382.
    2. Wang, Bohong & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Chin, Hon Huin & Wang, Qiu-Wang & Zeng, Min, 2020. "Heat exchanger network retrofit by a shifted retrofit thermodynamic grid diagram-based model and a two-stage approach," Energy, Elsevier, vol. 198(C).
    3. Wickart, Marcel & Madlener, Reinhard, 2007. "Optimal technology choice and investment timing: A stochastic model of industrial cogeneration vs. heat-only production," Energy Economics, Elsevier, vol. 29(4), pages 934-952, July.
    4. Halil Bayram & Gökhan Sevilgen, 2017. "Numerical Investigation of the Effect of Variable Baffle Spacing on the Thermal Performance of a Shell and Tube Heat Exchanger," Energies, MDPI, vol. 10(8), pages 1-19, August.
    5. Lal, Nathan S. & Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R., 2018. "A novel Heat Exchanger Network Bridge Retrofit method using the Modified Energy Transfer Diagram," Energy, Elsevier, vol. 155(C), pages 190-204.
    6. Akpomiemie, Mary O. & Smith, Robin, 2016. "Retrofit of heat exchanger networks with heat transfer enhancement based on an area ratio approach," Applied Energy, Elsevier, vol. 165(C), pages 22-35.
    7. Hür Bütün & Ivan Kantor & François Maréchal, 2019. "An Optimisation Approach for Long-Term Industrial Investment Planning," Energies, MDPI, vol. 12(21), pages 1-33, October.
    8. Halil Bayram & Gökhan Sevilgen, 2017. "Correction: Halil, B.; Gökhan, S. Numerical Investigation of the Effect of Variable Baffle Spacing on the Thermal Performance of a Shell and Tube Heat Exchanger. Energies 2017, 10 , 1156," Energies, MDPI, vol. 10(12), pages 1-1, December.
    9. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2017. "Generation expansion planning with high share of renewables of variable output," Applied Energy, Elsevier, vol. 190(C), pages 1275-1288.
    10. Soltani, Hadi & Shafiei, Sirous, 2011. "Heat exchanger networks retrofit with considering pressure drop by coupling genetic algorithm with LP (linear programming) and ILP (integer linear programming) methods," Energy, Elsevier, vol. 36(5), pages 2381-2391.
    11. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    12. Jiang, Ning & Shelley, Jacob David & Doyle, Steve & Smith, Robin, 2014. "Heat exchanger network retrofit with a fixed network structure," Applied Energy, Elsevier, vol. 127(C), pages 25-33.
    13. Lai, Yee Qing & Manan, Zainuddin Abdul & Wan Alwi, Sharifah Rafidah, 2018. "Simultaneous diagnosis and retrofit of heat exchanger network via individual process stream mapping," Energy, Elsevier, vol. 155(C), pages 1113-1128.
    14. Faccio, M. & Persona, A. & Sgarbossa, F. & Zanin, G., 2014. "Industrial maintenance policy development: A quantitative framework," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 85-93.
    15. Lai, Yee Qing & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul, 2019. "Customised retrofit of heat exchanger network combining area distribution and targeted investment," Energy, Elsevier, vol. 179(C), pages 1054-1066.
    16. Gadalla, Mamdouh A., 2015. "A new graphical method for Pinch Analysis applications: Heat exchanger network retrofit and energy integration," Energy, Elsevier, vol. 81(C), pages 159-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Technologies, Methods, and Economic Analysis for Sustainable Development of Energy, Water, and Environment Systems," Energies, MDPI, vol. 15(19), pages 1-24, September.
    2. Li, Nianqi & Klemeš, Jiří Jaromír & Sunden, Bengt & Wu, Zan & Wang, Qiuwang & Zeng, Min, 2022. "Heat exchanger network synthesis considering detailed thermal-hydraulic performance: Methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Zhang, Sheng & Ocłoń, Paweł & Klemeš, Jiří Jaromír & Michorczyk, Piotr & Pielichowska, Kinga & Pielichowski, Krzysztof, 2022. "Renewable energy systems for building heating, cooling and electricity production with thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Markowski, Mariusz & Urbaniec, Krzysztof & Suchecki, Witold & Storczyk, Sandra, 2023. "Improved energy recovery from the condensed steam as part of HEN retrofit," Energy, Elsevier, vol. 270(C).
    5. Hong, Bingyuan & Cui, Xuemeng & Wang, Bohong & Fan, Di & Li, Xiaoping & Gong, Jing, 2022. "Long-term dynamic allocation and maintenance planning of modular equipment to enhance gas field production flexibility," Energy, Elsevier, vol. 252(C).
    6. Wang, Bohong & Arsenyeva, Olga & Zeng, Min & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2022. "An advanced Grid Diagram for heat exchanger network retrofit with detailed plate heat exchanger design," Energy, Elsevier, vol. 248(C).
    7. Wang, Bohong & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Zeng, Min & Liang, Yongtu, 2021. "Heat Exchanger Network synthesis considering prohibited and restricted matches," Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bohong & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Chin, Hon Huin & Wang, Qiu-Wang & Zeng, Min, 2020. "Heat exchanger network retrofit by a shifted retrofit thermodynamic grid diagram-based model and a two-stage approach," Energy, Elsevier, vol. 198(C).
    2. Wang, Bohong & Klemeš, Jiří Jaromír & Li, Nianqi & Zeng, Min & Varbanov, Petar Sabev & Liang, Yongtu, 2021. "Heat exchanger network retrofit with heat exchanger and material type selection: A review and a novel method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    5. Lai, Yee Qing & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul, 2020. "Graphical customisation of process and utility changes for heat exchanger network retrofit using individual stream temperature versus enthalpy plot," Energy, Elsevier, vol. 203(C).
    6. Li, Nianqi & Klemeš, Jiří Jaromír & Sunden, Bengt & Wu, Zan & Wang, Qiuwang & Zeng, Min, 2022. "Heat exchanger network synthesis considering detailed thermal-hydraulic performance: Methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Bohong Wang & Jiří Jaromír Klemeš & Petar Sabev Varbanov & Min Zeng, 2020. "An Extended Grid Diagram for Heat Exchanger Network Retrofit Considering Heat Exchanger Types," Energies, MDPI, vol. 13(10), pages 1-14, May.
    8. Lai, Yee Qing & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul, 2019. "Customised retrofit of heat exchanger network combining area distribution and targeted investment," Energy, Elsevier, vol. 179(C), pages 1054-1066.
    9. Kamel, Dina A. & Gadalla, Mamdouh A. & Abdelaziz, Omar Y. & Labib, Mennat A. & Ashour, Fatma H., 2017. "Temperature driving force (TDF) curves for heat exchanger network retrofit – A case study and implications," Energy, Elsevier, vol. 123(C), pages 283-295.
    10. Akpomiemie, Mary O. & Smith, Robin, 2018. "Cost-effective strategy for heat exchanger network retrofit," Energy, Elsevier, vol. 146(C), pages 82-97.
    11. Lal, Nathan S. & Atkins, Martin J. & Walmsley, Timothy G. & Walmsley, Michael R.W. & Neale, James R., 2019. "Insightful heat exchanger network retrofit design using Monte Carlo simulation," Energy, Elsevier, vol. 181(C), pages 1129-1141.
    12. Zhi, Keke & Wang, Bohong & Guo, Lianghui & Chen, Yujie & Li, Wei & Ocłoń, Paweł & Wang, Jin & Chen, Yuping & Tao, Hengcong & Li, Xinze & Varbanov, Petar Sabev, 2024. "Graphical pinch analysis-based method for heat exchanger networks retrofit of a residuum hydrogenation process," Energy, Elsevier, vol. 299(C).
    13. Christian Langner & Elin Svensson & Simon Harvey, 2020. "A Framework for Flexible and Cost-Efficient Retrofit Measures of Heat Exchanger Networks," Energies, MDPI, vol. 13(6), pages 1-24, March.
    14. Lal, Nathan S. & Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R., 2018. "A novel Heat Exchanger Network Bridge Retrofit method using the Modified Energy Transfer Diagram," Energy, Elsevier, vol. 155(C), pages 190-204.
    15. Kan Wang & Jianqing Hu & Qiaoqiao Tang & Chang He & Bingjian Zhang & Qinglin Chen, 2023. "An engineering target-oriented multi-scenario heat exchanger network retrofit methodology with consideration of exergoeconomic assessment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 375-399, January.
    16. Beata Pytlik & Daniel Smykowski & Piotr Szulc, 2022. "The Impact of Baffle Geometry in the PCM Heat Storage Unit on the Charging Process with High and Low Water Streams," Energies, MDPI, vol. 15(24), pages 1-17, December.
    17. Hür Bütün & Ivan Kantor & François Maréchal, 2019. "An Optimisation Approach for Long-Term Industrial Investment Planning," Energies, MDPI, vol. 12(21), pages 1-33, October.
    18. Florian Schlosser & Heinrich Wiebe & Timothy G. Walmsley & Martin J. Atkins & Michael R. W. Walmsley & Jens Hesselbach, 2020. "Heat Pump Bridge Analysis Using the Modified Energy Transfer Diagram," Energies, MDPI, vol. 14(1), pages 1-24, December.
    19. Tahouni, Nassim & Khoshchehreh, Rezvaneh & Panjeshahi, M. Hassan, 2014. "Debottlenecking of condensate stabilization unit in a gas refinery," Energy, Elsevier, vol. 77(C), pages 742-751.
    20. Wang, Bohong & Arsenyeva, Olga & Zeng, Min & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2022. "An advanced Grid Diagram for heat exchanger network retrofit with detailed plate heat exchanger design," Energy, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s030626192031206x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.