IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v181y2019icp1129-1141.html
   My bibliography  Save this article

Insightful heat exchanger network retrofit design using Monte Carlo simulation

Author

Listed:
  • Lal, Nathan S.
  • Atkins, Martin J.
  • Walmsley, Timothy G.
  • Walmsley, Michael R.W.
  • Neale, James R.

Abstract

The aim of this paper is to use Monte Carlo simulation (MCS) to analyse the effect of stream data variation on the performance of retrofitted heat exchanger networks. MCS offers a stochastic approach to retrofit design analysis by using historical stream data to model how a retrofitted network would perform over time. The method is demonstrated with two case studies. The first is an illustrative example that showcases the features of the proposed method, while the second is a real-life case study using historical data from a section of a Kraft mill's heat exchanger network. The results show how MCS can be used as a comparison tool between exchangers and networks, differentiating between designs with similar steady-state performance, and offering insights into the reliability of the heat exchangers. For example, in the case study, the MCS results show that an estimated 62% of the time, a cold stream will exceed its target temperature under one of the retrofit proposals (which could have serious process operation and safety issues). MCS also offers another way of conducting an economic analysis which has so far tended to be less optimistic than the steady-state analysis and offers greater confidence in the profitability estimates.

Suggested Citation

  • Lal, Nathan S. & Atkins, Martin J. & Walmsley, Timothy G. & Walmsley, Michael R.W. & Neale, James R., 2019. "Insightful heat exchanger network retrofit design using Monte Carlo simulation," Energy, Elsevier, vol. 181(C), pages 1129-1141.
  • Handle: RePEc:eee:energy:v:181:y:2019:i:c:p:1129-1141
    DOI: 10.1016/j.energy.2019.06.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421931165X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philipp, Matthias & Schumm, Gregor & Peesel, Ron-Hendrik & Walmsley, Timothy G. & Atkins, Martin J. & Schlosser, Florian & Hesselbach, Jens, 2018. "Optimal energy supply structures for industrial food processing sites in different countries considering energy transitions," Energy, Elsevier, vol. 146(C), pages 112-123.
    2. Akpomiemie, Mary O. & Smith, Robin, 2016. "Retrofit of heat exchanger networks with heat transfer enhancement based on an area ratio approach," Applied Energy, Elsevier, vol. 165(C), pages 22-35.
    3. Lai, Yee Qing & Manan, Zainuddin Abdul & Wan Alwi, Sharifah Rafidah, 2018. "Simultaneous diagnosis and retrofit of heat exchanger network via individual process stream mapping," Energy, Elsevier, vol. 155(C), pages 1113-1128.
    4. Akpomiemie, Mary O. & Smith, Robin, 2018. "Cost-effective strategy for heat exchanger network retrofit," Energy, Elsevier, vol. 146(C), pages 82-97.
    5. Novak Pintarič, Zorka & Kravanja, Zdravko, 2015. "A methodology for the synthesis of heat exchanger networks having large numbers of uncertain parameters," Energy, Elsevier, vol. 92(P3), pages 373-382.
    6. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    7. Lal, Nathan S. & Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R., 2018. "A novel Heat Exchanger Network Bridge Retrofit method using the Modified Energy Transfer Diagram," Energy, Elsevier, vol. 155(C), pages 190-204.
    8. Barreto,Humberto & Howland,Frank, 2006. "Introductory Econometrics," Cambridge Books, Cambridge University Press, number 9780521843195, September.
    9. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    10. Badar, M.Affan & Zubair, Syed M. & Sheikh, Anwar K., 1993. "Uncertainty analysis of heat-exchanger thermal designs using the Monte Carlo simulation technique," Energy, Elsevier, vol. 18(8), pages 859-866.
    11. Kamel, Dina A. & Gadalla, Mamdouh A. & Abdelaziz, Omar Y. & Labib, Mennat A. & Ashour, Fatma H., 2017. "Temperature driving force (TDF) curves for heat exchanger network retrofit – A case study and implications," Energy, Elsevier, vol. 123(C), pages 283-295.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Langner & Elin Svensson & Simon Harvey, 2020. "A Framework for Flexible and Cost-Efficient Retrofit Measures of Heat Exchanger Networks," Energies, MDPI, vol. 13(6), pages 1-24, March.
    2. Hafizan, Ainur Munirah & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abd & Klemeš, Jiří Jaromír & Abd Hamid, Mohd Kamaruddin, 2020. "Design of optimal heat exchanger network with fluctuation probability using break-even analysis," Energy, Elsevier, vol. 212(C).
    3. Walden, Jasper V.M. & Wellig, Beat & Stathopoulos, Panagiotis, 2023. "Heat pump integration in non-continuous industrial processes by Dynamic Pinch Analysis Targeting," Applied Energy, Elsevier, vol. 352(C).
    4. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    5. Zhou, Na & Wu, Qiaosheng & Hu, Xiangping & Zhu, Yongguang & Su, Hui & Xue, Shuangjiao, 2020. "Synthesized indicator for evaluating security of strategic minerals in China: A case study of lithium," Resources Policy, Elsevier, vol. 69(C).
    6. Zhang, Di & Lv, Donghui & Yin, Changfang & Liu, Guilian, 2020. "Combined pinch and mathematical programming method for coupling integration of reactor and threshold heat exchanger network," Energy, Elsevier, vol. 205(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    2. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    3. Christian Langner & Elin Svensson & Simon Harvey, 2020. "A Framework for Flexible and Cost-Efficient Retrofit Measures of Heat Exchanger Networks," Energies, MDPI, vol. 13(6), pages 1-24, March.
    4. Wang, Bohong & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Chin, Hon Huin & Wang, Qiu-Wang & Zeng, Min, 2020. "Heat exchanger network retrofit by a shifted retrofit thermodynamic grid diagram-based model and a two-stage approach," Energy, Elsevier, vol. 198(C).
    5. Wang, Bohong & Klemeš, Jiří Jaromír & Li, Nianqi & Zeng, Min & Varbanov, Petar Sabev & Liang, Yongtu, 2021. "Heat exchanger network retrofit with heat exchanger and material type selection: A review and a novel method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Lai, Yee Qing & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul, 2019. "Customised retrofit of heat exchanger network combining area distribution and targeted investment," Energy, Elsevier, vol. 179(C), pages 1054-1066.
    7. Li, Nianqi & Klemeš, Jiří Jaromír & Sunden, Bengt & Wu, Zan & Wang, Qiuwang & Zeng, Min, 2022. "Heat exchanger network synthesis considering detailed thermal-hydraulic performance: Methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Chin, Hon Huin & Wang, Bohong & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Zeng, Min & Wang, Qiu-Wang, 2020. "Long-term investment and maintenance planning for heat exchanger network retrofit," Applied Energy, Elsevier, vol. 279(C).
    9. Lai, Yee Qing & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul, 2020. "Graphical customisation of process and utility changes for heat exchanger network retrofit using individual stream temperature versus enthalpy plot," Energy, Elsevier, vol. 203(C).
    10. Florian Schlosser & Heinrich Wiebe & Timothy G. Walmsley & Martin J. Atkins & Michael R. W. Walmsley & Jens Hesselbach, 2020. "Heat Pump Bridge Analysis Using the Modified Energy Transfer Diagram," Energies, MDPI, vol. 14(1), pages 1-24, December.
    11. Lal, Nathan S. & Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R., 2018. "A novel Heat Exchanger Network Bridge Retrofit method using the Modified Energy Transfer Diagram," Energy, Elsevier, vol. 155(C), pages 190-204.
    12. Bohong Wang & Jiří Jaromír Klemeš & Petar Sabev Varbanov & Min Zeng, 2020. "An Extended Grid Diagram for Heat Exchanger Network Retrofit Considering Heat Exchanger Types," Energies, MDPI, vol. 13(10), pages 1-14, May.
    13. Yee Van Fan & Zorka Novak Pintarič & Jiří Jaromír Klemeš, 2020. "Emerging Tools for Energy System Design Increasing Economic and Environmental Sustainability," Energies, MDPI, vol. 13(16), pages 1-25, August.
    14. Zhao, Liwen & Liu, Guilian, 2024. "A comprehensive framework for targeting the disturbance propagation path and debottleneck strategy of chemical process considering the topology and cascading effects," Energy, Elsevier, vol. 301(C).
    15. Elza Jurun & Snježana Pivac, 2011. "Comparative regional GDP analysis: case study of Croatia," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(3), pages 319-335, September.
    16. Ioana Gutu & Daniela Tatiana Agheorghiesei & Alexandru Tugui, 2023. "Assessment of a Workforce Sustainability Tool through Leadership and Digitalization," IJERPH, MDPI, vol. 20(2), pages 1-30, January.
    17. Daniela Andreini & Diego Rinallo & Giuseppe Pedeliento & Mara Bergamaschi, 2017. "Brands and Religion in the Secularized Marketplace and Workplace: Insights from the Case of an Italian Hospital Renamed After a Roman Catholic Pope," Journal of Business Ethics, Springer, vol. 141(3), pages 529-550, March.
    18. S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 54(4), pages 1503-1516, June.
    19. Byrd, T. A. & Marshall, T. E., 1997. "Relating information technology investment to organizational performance: a causal model analysis," Omega, Elsevier, vol. 25(1), pages 43-56, February.
    20. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:181:y:2019:i:c:p:1129-1141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.