IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v196y2020ics0360544220302085.html
   My bibliography  Save this article

Model predictive control of hybrid electric vehicles for fuel economy, emission reductions, and inter-vehicle safety in car-following scenarios

Author

Listed:
  • Hu, Xiaosong
  • Zhang, Xiaoqian
  • Tang, Xiaolin
  • Lin, Xianke

Abstract

This paper develops a model predictive multi-objective control framework for HEVs in car-following scenarios to investigate the interplay between fuel economy, vehicle exhaust emissions, and inter-vehicle safety. Specifically, an MPC-based controller is developed to optimize the vehicle speed and engine torque for better fuel economy and fewer exhaust emissions while ensuring inter-vehicle safety. The engine-out emission model and its impact on energy management are considered in the optimization. The proposed controller is evaluated at different driving conditions, such as urban driving and highway driving. The proposed controller is compared with conventional controllers used in ADVISOR. The comparison results demonstrate that the proposed controller can reduce fuel consumption by 10.49%, CO by 48.02%, HC by 55.38%, and NOx by 22.79% in the UDDS driving cycle.

Suggested Citation

  • Hu, Xiaosong & Zhang, Xiaoqian & Tang, Xiaolin & Lin, Xianke, 2020. "Model predictive control of hybrid electric vehicles for fuel economy, emission reductions, and inter-vehicle safety in car-following scenarios," Energy, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:energy:v:196:y:2020:i:c:s0360544220302085
    DOI: 10.1016/j.energy.2020.117101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220302085
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Chao & Du, Siyu & Li, Liang & You, Sixong & Yang, Yiyong & Zhao, Yue, 2017. "Adaptive real-time optimal energy management strategy based on equivalent factors optimization for plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 203(C), pages 883-896.
    2. Xie, Shaobo & Hu, Xiaosong & Qi, Shanwei & Tang, Xiaolin & Lang, Kun & Xin, Zongke & Brighton, James, 2019. "Model predictive energy management for plug-in hybrid electric vehicles considering optimal battery depth of discharge," Energy, Elsevier, vol. 173(C), pages 667-678.
    3. Tang, Xiaolin & Zhang, Dejiu & Liu, Teng & Khajepour, Amir & Yu, Haisheng & Wang, Hong, 2019. "Research on the energy control of a dual-motor hybrid vehicle during engine start-stop process," Energy, Elsevier, vol. 166(C), pages 1181-1193.
    4. Xie, Shaobo & Hu, Xiaosong & Liu, Teng & Qi, Shanwei & Lang, Kun & Li, Huiling, 2019. "Predictive vehicle-following power management for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 166(C), pages 701-714.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zifei Nie & Hooman Farzaneh, 2021. "Role of Model Predictive Control for Enhancing Eco-Driving of Electric Vehicles in Urban Transport System of Japan," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    2. Taghavifar, Hadi, 2021. "Fuel cell hybrid range-extender vehicle sizing: Parametric power optimization," Energy, Elsevier, vol. 229(C).
    3. Wang, Siyang & Lin, Xianke, 2020. "Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios," Applied Energy, Elsevier, vol. 271(C).
    4. Tang, Xiaolin & Zhou, Haitao & Wang, Feng & Wang, Weida & Lin, Xianke, 2022. "Longevity-conscious energy management strategy of fuel cell hybrid electric Vehicle Based on deep reinforcement learning," Energy, Elsevier, vol. 238(PA).
    5. Barbosa, Társis Prado & Eckert, Jony Javorski & Roso, Vinícius Rückert & Pujatti, Fabrício José Pacheco & da Silva, Leonardo Adolpho Rodrigues & Horta Gutiérrez, Juan Carlos, 2021. "Fuel saving and lower pollutants emissions using an ethanol-fueled engine in a hydraulic hybrid passengers vehicle," Energy, Elsevier, vol. 235(C).
    6. Eckert, Jony Javorski & Silva, Fabrício L. & da Silva, Samuel Filgueira & Bueno, André Valente & de Oliveira, Mona Lisa Moura & Silva, Ludmila C.A., 2022. "Optimal design and power management control of hybrid biofuel–electric powertrain," Applied Energy, Elsevier, vol. 325(C).
    7. Liu, Geng & Sun, Shida & Zou, Chao & Wang, Bo & Wu, Lin & Mao, Hongjun, 2022. "Air pollutant emissions from on-road vehicles and their control in Inner Mongolia, China," Energy, Elsevier, vol. 238(PB).
    8. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    9. Antonio Rossetti & Nicola Andretta & Alarico Macor, 2022. "On the Use of the Disability-Adjusted Life Year (DALY) Estimator as a Metric to Optimally Manage ICE Emissions," Energies, MDPI, vol. 15(12), pages 1-14, June.
    10. Rajput, Daizy & Herreros, Jose M. & Innocente, Mauro S. & Bryans, Jeremy & Schaub, Joschka & Dizqah, Arash M., 2022. "Impact of the number of planetary gears on the energy efficiency of electrified powertrains," Applied Energy, Elsevier, vol. 323(C).
    11. Li, Lixu & Wang, Zhiqiang & Xie, Xiaoqing, 2022. "From government to market? A discrete choice analysis of policy instruments for electric vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 143-159.
    12. Wu, Yue & Huang, Zhiwu & Hofmann, Heath & Liu, Yongjie & Huang, Jiahao & Hu, Xiaosong & Peng, Jun & Song, Ziyou, 2022. "Hierarchical predictive control for electric vehicles with hybrid energy storage system under vehicle-following scenarios," Energy, Elsevier, vol. 251(C).
    13. Nie, Zhigen & Jia, Yuan & Wang, Wanqiong & Chen, Zheng & Outbib, Rachid, 2022. "Co-optimization of speed planning and energy management for intelligent fuel cell hybrid vehicle considering complex traffic conditions," Energy, Elsevier, vol. 247(C).
    14. Nie, Zifei & Farzaneh, Hooman, 2022. "Real-time dynamic predictive cruise control for enhancing eco-driving of electric vehicles, considering traffic constraints and signal phase and timing (SPaT) information, using artificial-neural-netw," Energy, Elsevier, vol. 241(C).
    15. Liu, Rui & Liu, Hui & Nie, Shida & Han, Lijin & Yang, Ningkang, 2023. "A hierarchical eco-driving strategy for hybrid electric vehicles via vehicle-to-cloud connectivity," Energy, Elsevier, vol. 281(C).
    16. Li, Bin & Dong, Xujun & Wen, Jianghui, 2022. "Cooperative-driving control for mixed fleets at wireless charging sections for lane changing behaviour," Energy, Elsevier, vol. 243(C).
    17. Ruan, Shumin & Ma, Yue & Yang, Ningkang & Yan, Qi & Xiang, Changle, 2023. "Multiobjective optimization of longitudinal dynamics and energy management for HEVs based on nash bargaining game," Energy, Elsevier, vol. 262(PA).
    18. Xiaobo Sun & Weirong Liu & Mengfei Wen & Yue Wu & Heng Li & Jiahao Huang & Chao Hu & Zhiwu Huang, 2021. "A Real-Time Optimal Car-Following Power Management Strategy for Hybrid Electric Vehicles with ACC Systems," Energies, MDPI, vol. 14(12), pages 1-17, June.
    19. Li, Yapeng & Wang, Feng & Tang, Xiaolin & Hu, Xiaosong & Lin, Xianke, 2022. "Convex optimization-based predictive and bi-level energy management for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 257(C).
    20. Aminu Babangida & Chiedozie Maduakolam Light Odazie & Péter Tamás Szemes, 2023. "Optimal Control Design and Online Controller-Area-Network Bus Data Analysis for a Light Commercial Hybrid Electric Vehicle," Mathematics, MDPI, vol. 11(15), pages 1-19, August.
    21. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    22. Luis B. Elvas & Joao C Ferreira, 2021. "Intelligent Transportation Systems for Electric Vehicles," Energies, MDPI, vol. 14(17), pages 1-9, September.
    23. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shuo & Hu, Xiaosong & Xie, Shaobo & Song, Ziyou & Hu, Lin & Hou, Cong, 2019. "Adaptively coordinated optimization of battery aging and energy management in plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 256(C).
    2. Geng, Wenran & Lou, Diming & Wang, Chen & Zhang, Tong, 2020. "A cascaded energy management optimization method of multimode power-split hybrid electric vehicles," Energy, Elsevier, vol. 199(C).
    3. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Xie, Shaobo & Qi, Shanwei & Lang, Kun & Tang, Xiaolin & Lin, Xianke, 2020. "Coordinated management of connected plug-in hybrid electric buses for energy saving, inter-vehicle safety, and battery health," Applied Energy, Elsevier, vol. 268(C).
    5. Taghavifar, Hadi, 2021. "Fuel cell hybrid range-extender vehicle sizing: Parametric power optimization," Energy, Elsevier, vol. 229(C).
    6. Yang, Chao & Wang, Muyao & Wang, Weida & Pu, Zesong & Ma, Mingyue, 2021. "An efficient vehicle-following predictive energy management strategy for PHEV based on improved sequential quadratic programming algorithm," Energy, Elsevier, vol. 219(C).
    7. Tian, Xiang & Cai, Yingfeng & Sun, Xiaodong & Zhu, Zhen & Xu, Yiqiang, 2019. "An adaptive ECMS with driving style recognition for energy optimization of parallel hybrid electric buses," Energy, Elsevier, vol. 189(C).
    8. Lu Han & Xiaohong Jiao & Zhao Zhang, 2020. "Recurrent Neural Network-Based Adaptive Energy Management Control Strategy of Plug-In Hybrid Electric Vehicles Considering Battery Aging," Energies, MDPI, vol. 13(1), pages 1-22, January.
    9. Qin, Yechen & Tang, Xiaolin & Jia, Tong & Duan, Ziwen & Zhang, Jieming & Li, Yinong & Zheng, Ling, 2020. "Noise and vibration suppression in hybrid electric vehicles: State of the art and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    10. Lin, Cheng & Zhao, Mingjie & Pan, Hong & Yi, Jiang, 2019. "Blending gear shift strategy design and comparison study for a battery electric city bus with AMT," Energy, Elsevier, vol. 185(C), pages 1-14.
    11. Zhang, Yuanjian & Gao, Bingzhao & Jiang, Jingjing & Liu, Chengyuan & Zhao, Dezong & Zhou, Quan & Chen, Zheng & Lei, Zhenzhen, 2023. "Cooperative power management for range extended electric vehicle based on internet of vehicles," Energy, Elsevier, vol. 273(C).
    12. Xiaobo Sun & Weirong Liu & Mengfei Wen & Yue Wu & Heng Li & Jiahao Huang & Chao Hu & Zhiwu Huang, 2021. "A Real-Time Optimal Car-Following Power Management Strategy for Hybrid Electric Vehicles with ACC Systems," Energies, MDPI, vol. 14(12), pages 1-17, June.
    13. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    14. Yang, Jibin & Xu, Xiaohui & Peng, Yiqiang & Zhang, Jiye & Song, Pengyun, 2019. "Modeling and optimal energy management strategy for a catenary-battery-ultracapacitor based hybrid tramway," Energy, Elsevier, vol. 183(C), pages 1123-1135.
    15. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Guo, Hongqiang & Sun, Qun & Wang, Chong & Wang, Qinpu & Lu, Silong, 2018. "A systematic design and optimization method of transmission system and power management for a plug-in hybrid electric vehicle," Energy, Elsevier, vol. 148(C), pages 1006-1017.
    17. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    18. Hou, Daizheng & Sun, Qun & Bao, Chunjiang & Cheng, Xingqun & Guo, Hongqiang & Zhao, Ying, 2019. "An all-in-one design method for plug-in hybrid electric buses considering uncertain factor of driving cycles," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
    20. Xie, Shaobo & Lang, Kun & Qi, Shanwei, 2020. "Aerodynamic-aware coordinated control of following speed and power distribution for hybrid electric trucks," Energy, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:196:y:2020:i:c:s0360544220302085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.