IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v323y2022ics0306261922008480.html
   My bibliography  Save this article

Impact of the number of planetary gears on the energy efficiency of electrified powertrains

Author

Listed:
  • Rajput, Daizy
  • Herreros, Jose M.
  • Innocente, Mauro S.
  • Bryans, Jeremy
  • Schaub, Joschka
  • Dizqah, Arash M.

Abstract

Planetary gears (PGs) play a critical role in hybrid electric vehicles (HEVs) by combining the output torques of different powertrain components and delivering the resulting torque to the wheels. Whilst previous studies show that the number of planetary gears affects performance of HEVs, there is no prior study to systematically investigate such effects on energy consumption. This paper quantifies the energy efficiency improvement of HEVs due to increasing the number of PGs from one to two, and from two to three. This is done by comparing the minimum energy consumption for different topologies when the rest of the powertrain components – namely electric motors, batteries and engine – are the same. To calculate the minimum energy consumption, the paper proposes an optimal energy management strategy (EMS) for each topology to find the optimum sequence of clutch engagement and torque distribution. The minimum energy consumption of a vehicle with different number of PGs is then evaluated using the automotive simulation models (ASM) from dSPACE. Results show that, for the same electric motors and engine, increasing the number of PGs from one to two and from two to three reduces energy consumption by 5% and 1.5%, respectively.

Suggested Citation

  • Rajput, Daizy & Herreros, Jose M. & Innocente, Mauro S. & Bryans, Jeremy & Schaub, Joschka & Dizqah, Arash M., 2022. "Impact of the number of planetary gears on the energy efficiency of electrified powertrains," Applied Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922008480
    DOI: 10.1016/j.apenergy.2022.119531
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922008480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhuang, Weichao & Zhang, Xiaowu & Li, Daofei & Wang, Liangmo & Yin, Guodong, 2017. "Mode shift map design and integrated energy management control of a multi-mode hybrid electric vehicle," Applied Energy, Elsevier, vol. 204(C), pages 476-488.
    2. Weichao Zhuang & Xiaowu Zhang & Huei Peng & Liangmo Wang, 2016. "Simultaneous Optimization of Topology and Component Sizes for Double Planetary Gear Hybrid Powertrains," Energies, MDPI, vol. 9(6), pages 1-17, May.
    3. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    4. Li, Weihan & Cui, Han & Nemeth, Thomas & Jansen, Jonathan & Ünlübayir, Cem & Wei, Zhongbao & Feng, Xuning & Han, Xuebing & Ouyang, Minggao & Dai, Haifeng & Wei, Xuezhe & Sauer, Dirk Uwe, 2021. "Cloud-based health-conscious energy management of hybrid battery systems in electric vehicles with deep reinforcement learning," Applied Energy, Elsevier, vol. 293(C).
    5. Sarvaiya, Shradhdha & Ganesh, Sachin & Xu, Bin, 2021. "Comparative analysis of hybrid vehicle energy management strategies with optimization of fuel economy and battery life," Energy, Elsevier, vol. 228(C).
    6. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    7. Sun, Chao & Sun, Fengchun & He, Hongwen, 2017. "Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 1644-1653.
    8. Hu, Xiaosong & Zhang, Xiaoqian & Tang, Xiaolin & Lin, Xianke, 2020. "Model predictive control of hybrid electric vehicles for fuel economy, emission reductions, and inter-vehicle safety in car-following scenarios," Energy, Elsevier, vol. 196(C).
    9. Shuxian Li & Minghui Hu & Changchao Gong & Sen Zhan & Datong Qin, 2018. "Energy Management Strategy for Hybrid Electric Vehicle Based on Driving Condition Identification Using KGA-Means," Energies, MDPI, vol. 11(6), pages 1-16, June.
    10. Yang, Yalian & Hu, Xiaosong & Pei, Huanxin & Peng, Zhiyuan, 2016. "Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach," Applied Energy, Elsevier, vol. 168(C), pages 683-690.
    11. Zhuang, Weichao & Zhang, Xiaowu & Ding, Yang & Wang, Liangmo & Hu, Xiaosong, 2016. "Comparison of multi-mode hybrid powertrains with multiple planetary gears," Applied Energy, Elsevier, vol. 178(C), pages 624-632.
    12. Zhang, Hao & Fan, Qinhao & Liu, Shang & Li, Shengbo Eben & Huang, Jin & Wang, Zhi, 2021. "Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine," Applied Energy, Elsevier, vol. 304(C).
    13. Shen, Peihong & Zhao, Zhiguo & Zhan, Xiaowen & Li, Jingwei & Guo, Qiuyi, 2018. "Optimal energy management strategy for a plug-in hybrid electric commercial vehicle based on velocity prediction," Energy, Elsevier, vol. 155(C), pages 838-852.
    14. Zhou, Jianhao & Xue, Siwu & Xue, Yuan & Liao, Yuhui & Liu, Jun & Zhao, Wanzhong, 2021. "A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning," Energy, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    2. Wang, Yue & Li, Keqiang & Zeng, Xiaohua & Gao, Bolin & Hong, Jichao, 2023. "Investigation of novel intelligent energy management strategies for connected HEB considering global planning of fixed-route information," Energy, Elsevier, vol. 263(PB).
    3. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    4. Wang, Yue & Zeng, Xiaohua & Song, Dafeng, 2020. "Hierarchical optimal intelligent energy management strategy for a power-split hybrid electric bus based on driving information," Energy, Elsevier, vol. 199(C).
    5. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    6. Yang, Yalian & Pei, Huanxin & Hu, Xiaosong & Liu, Yonggang & Hou, Cong & Cao, Dongpu, 2019. "Fuel economy optimization of power split hybrid vehicles: A rapid dynamic programming approach," Energy, Elsevier, vol. 166(C), pages 929-938.
    7. Qin, Zhaobo & Luo, Yugong & Zhuang, Weichao & Pan, Ziheng & Li, Keqiang & Peng, Huei, 2018. "Simultaneous optimization of topology, control and size for multi-mode hybrid tracked vehicles," Applied Energy, Elsevier, vol. 212(C), pages 1627-1641.
    8. Anselma, Pier Giuseppe, 2022. "Electrified powertrain sizing for vehicle fleets of car makers considering total ownership costs and CO2 emission legislation scenarios," Applied Energy, Elsevier, vol. 314(C).
    9. Nie, Zhigen & Jia, Yuan & Wang, Wanqiong & Chen, Zheng & Outbib, Rachid, 2022. "Co-optimization of speed planning and energy management for intelligent fuel cell hybrid vehicle considering complex traffic conditions," Energy, Elsevier, vol. 247(C).
    10. Yu, Xiao & Lin, Cheng & Tian, Yu & Zhao, Mingjie & Liu, Huimin & Xie, Peng & Zhang, JunZhi, 2023. "Real-time and hierarchical energy management-control framework for electric vehicles with dual-motor powertrain system," Energy, Elsevier, vol. 272(C).
    11. Zhang, Bo & Zhang, Jiangyan & Shen, Tielong, 2022. "Optimal control design for comfortable-driving of hybrid electric vehicles in acceleration mode," Applied Energy, Elsevier, vol. 305(C).
    12. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    13. Zhuang, Weichao & Zhang, Xiaowu & Li, Daofei & Wang, Liangmo & Yin, Guodong, 2017. "Mode shift map design and integrated energy management control of a multi-mode hybrid electric vehicle," Applied Energy, Elsevier, vol. 204(C), pages 476-488.
    14. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    15. Anselma, Pier Giuseppe & Biswas, Atriya & Belingardi, Giovanni & Emadi, Ali, 2020. "Rapid assessment of the fuel economy capability of parallel and series-parallel hybrid electric vehicles," Applied Energy, Elsevier, vol. 275(C).
    16. Geng, Wenran & Lou, Diming & Wang, Chen & Zhang, Tong, 2020. "A cascaded energy management optimization method of multimode power-split hybrid electric vehicles," Energy, Elsevier, vol. 199(C).
    17. Zhou, Xingyu & Qin, Datong & Hu, Jianjun, 2017. "Multi-objective optimization design and performance evaluation for plug-in hybrid electric vehicle powertrains," Applied Energy, Elsevier, vol. 208(C), pages 1608-1625.
    18. Wang, Siyang & Lin, Xianke, 2020. "Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios," Applied Energy, Elsevier, vol. 271(C).
    19. Cai, Y. & Ouyang, M.G. & Yang, F., 2017. "Impact of power split configurations on fuel consumption and battery degradation in plug-in hybrid electric city buses," Applied Energy, Elsevier, vol. 188(C), pages 257-269.
    20. Huijun Yue & Jinyu Lin & Peng Dong & Zhinan Chen & Xiangyang Xu, 2023. "Configurations and Control Strategies of Hybrid Powertrain Systems," Energies, MDPI, vol. 16(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922008480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.