IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v279y2023ics0360544223015335.html
   My bibliography  Save this article

Deep reinforcement learning-based eco-driving control for connected electric vehicles at signalized intersections considering traffic uncertainties

Author

Listed:
  • Li, Jie
  • Fotouhi, Abbas
  • Pan, Wenjun
  • Liu, Yonggang
  • Zhang, Yuanjian
  • Chen, Zheng

Abstract

Eco-driving control poses great energy-saving potential at multiple signalized intersection scenarios. However, traffic uncertainties can often lead to errors in ecological velocity planning and result in increased energy consumption. This study proposes an eco-driving approach with a hierarchical framework to be leveraged at signalized intersections that considers the impact of traffic uncertainty. The proposed approach leverages a queue-based traffic model in the upper level to estimate the impact of traffic uncertainty and generate dynamic modified traffic light information. In the lower level, a deep reinforcement learning-based controller is constructed to optimize velocity subject to the constraints from the traffic lights and traffic uncertainty, thereby reducing energy consumption while ensuring driving safety. The effectiveness of the proposed control strategy is demonstrated through numerous simulation case studies. The simulation results show that the proposed method significantly improves energy economy and prevents unnecessary idling in uncertain traffic scenarios, as compared to other approaches that ignore traffic uncertainty. Furthermore, the proposed method is adaptable to different traffic scenarios and showcases energy efficiency.

Suggested Citation

  • Li, Jie & Fotouhi, Abbas & Pan, Wenjun & Liu, Yonggang & Zhang, Yuanjian & Chen, Zheng, 2023. "Deep reinforcement learning-based eco-driving control for connected electric vehicles at signalized intersections considering traffic uncertainties," Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223015335
    DOI: 10.1016/j.energy.2023.128139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223015335
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yong & Wu, Yuankai & Tang, Yingjuan & Li, Qin & He, Hongwen, 2023. "Cooperative energy management and eco-driving of plug-in hybrid electric vehicle via multi-agent reinforcement learning," Applied Energy, Elsevier, vol. 332(C).
    2. Dong, Haoxuan & Zhuang, Weichao & Chen, Boli & Wang, Yan & Lu, Yanbo & Liu, Ying & Xu, Liwei & Yin, Guodong, 2022. "A comparative study of energy-efficient driving strategy for connected internal combustion engine and electric vehicles at signalized intersections," Applied Energy, Elsevier, vol. 310(C).
    3. Li, Jie & Wu, Xiaodong & Xu, Min & Liu, Yonggang, 2022. "Deep reinforcement learning and reward shaping based eco-driving control for automated HEVs among signalized intersections," Energy, Elsevier, vol. 251(C).
    4. Xie, Shaobo & Hu, Xiaosong & Liu, Teng & Qi, Shanwei & Lang, Kun & Li, Huiling, 2019. "Predictive vehicle-following power management for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 166(C), pages 701-714.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Yanyan & Xiao, Tengfei & Wang, Hua, 2024. "Optimization strategy for connected automated vehicles to reduce energy consumption on freeway in rainy weather," Energy, Elsevier, vol. 296(C).
    2. Qin, Yanyan & Liu, Mingxuan & Hao, Wei, 2024. "Energy-optimal car-following model for connected automated vehicles considering traffic flow stability," Energy, Elsevier, vol. 298(C).
    3. Liu, Jinqiang & Wang, Chunyan & Zhao, Wanzhong, 2024. "An eco-driving strategy for autonomous electric vehicles crossing continuous speed-limit signalized intersections," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jie & Fotouhi, Abbas & Liu, Yonggang & Zhang, Yuanjian & Chen, Zheng, 2024. "Review on eco-driving control for connected and automated vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Cui, Wei & Cui, Naxin & Li, Tao & Cui, Zhongrui & Du, Yi & Zhang, Chenghui, 2022. "An efficient multi-objective hierarchical energy management strategy for plug-in hybrid electric vehicle in connected scenario," Energy, Elsevier, vol. 257(C).
    3. Chen, Zheng & Wu, Simin & Shen, Shiquan & Liu, Yonggang & Guo, Fengxiang & Zhang, Yuanjian, 2023. "Co-optimization of velocity planning and energy management for autonomous plug-in hybrid electric vehicles in urban driving scenarios," Energy, Elsevier, vol. 263(PF).
    4. Li, Jie & Wu, Xiaodong & Fan, Jiawei & Liu, Yonggang & Xu, Min, 2023. "Overcoming driving challenges in complex urban traffic: A multi-objective eco-driving strategy via safety model based reinforcement learning," Energy, Elsevier, vol. 284(C).
    5. Taghavifar, Hadi, 2021. "Fuel cell hybrid range-extender vehicle sizing: Parametric power optimization," Energy, Elsevier, vol. 229(C).
    6. Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
    7. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    8. Xie, Shaobo & Lang, Kun & Qi, Shanwei, 2020. "Aerodynamic-aware coordinated control of following speed and power distribution for hybrid electric trucks," Energy, Elsevier, vol. 209(C).
    9. Wang, Yue & Zeng, Xiaohua & Song, Dafeng, 2020. "Hierarchical optimal intelligent energy management strategy for a power-split hybrid electric bus based on driving information," Energy, Elsevier, vol. 199(C).
    10. Li, Cheng & Xu, Xiangyang & Zhu, Helong & Gan, Jiongpeng & Chen, Zhige & Tang, Xiaolin, 2024. "Research on car-following control and energy management strategy of hybrid electric vehicles in connected scene," Energy, Elsevier, vol. 293(C).
    11. Xingxing Wang & Shengren Liu & Peilin Ye & Yu Zhu & Yinnan Yuan & Linfei Chen, 2023. "Study of a Hybrid Vehicle Powertrain Parameter Matching Design Based on the Combination of Orthogonal Test and Cruise Software," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    12. Guo, Lingxiong & Zhang, Xudong & Zou, Yuan & Han, Lijin & Du, Guodong & Guo, Ningyuan & Xiang, Changle, 2022. "Co-optimization strategy of unmanned hybrid electric tracked vehicle combining eco-driving and simultaneous energy management," Energy, Elsevier, vol. 246(C).
    13. Ruan, Shumin & Ma, Yue & Yang, Ningkang & Xiang, Changle & Li, Xunming, 2022. "Real-time energy-saving control for HEVs in car-following scenario with a double explicit MPC approach," Energy, Elsevier, vol. 247(C).
    14. Hou, Zhuoran & Guo, Jianhua & Chu, Liang & Hu, Jincheng & Chen, Zheng & Zhang, Yuanjian, 2023. "Exploration the route of information integration for vehicle design: A knowledge-enhanced energy management strategy," Energy, Elsevier, vol. 282(C).
    15. Yaqian Wang & Xiaohong Jiao, 2022. "Dual Heuristic Dynamic Programming Based Energy Management Control for Hybrid Electric Vehicles," Energies, MDPI, vol. 15(9), pages 1-19, April.
    16. Zhang, Shuo & Hu, Xiaosong & Xie, Shaobo & Song, Ziyou & Hu, Lin & Hou, Cong, 2019. "Adaptively coordinated optimization of battery aging and energy management in plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 256(C).
    17. Ma, Yan & Ma, Qian & Liu, Yongqin & Gao, Jinwu & Chen, Hong, 2024. "Two-level optimization strategy for vehicle speed and battery thermal management in connected and automated EVs," Applied Energy, Elsevier, vol. 361(C).
    18. Zhang, Yuanjian & Liu, Yonggang & Huang, Yanjun & Chen, Zheng & Li, Guang & Hao, Wanming & Cunningham, Geoff & Early, Juliana, 2021. "An optimal control strategy design for plug-in hybrid electric vehicles based on internet of vehicles," Energy, Elsevier, vol. 228(C).
    19. Miltiadis D. Lytras & Kwok Tai Chui, 2019. "The Recent Development of Artificial Intelligence for Smart and Sustainable Energy Systems and Applications," Energies, MDPI, vol. 12(16), pages 1-7, August.
    20. Zhang, Fengqi & Hu, Xiaosong & Langari, Reza & Wang, Lihua & Cui, Yahui & Pang, Hui, 2021. "Adaptive energy management in automated hybrid electric vehicles with flexible torque request," Energy, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223015335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.