IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v193y2020ics0360544219324338.html
   My bibliography  Save this article

Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels

Author

Listed:
  • Feng, Yu
  • Liu, Yuna
  • Cao, Yong
  • Gong, Keyu
  • Liu, Shuyuan
  • Qin, Jiang

Abstract

The wall catalytic steam reforming (WCSR) is expected to be used in chemical recuperative cycle of scramjet because of its high chemical heat sink and low coke deposition. Therefore, a numerical model is established and validated based on experiments to improve utilization of chemical heat sink, generated from WCSR at supercritical pressures. The numerical results indicate that a maximal value exists at the axial distribution of chemical heat sink under the combined influence of endothermic and exothermic reactions in WCSR. The chemical heat sink increases to the maximal value, and then decreases after it. The radial chemical heat sink is of layer distribution. According to the fundamental numerical study on influence of key parameters on the WCSR, the results indicate that the maximal value of chemical heat sink has reduced by 15% as operation pressure increases from 3 MPa to 5 MPa, which is distinctly different from that of pyrolysis. As velocity decreases, the maximal value of chemical heat sink moves toward inlet and the total chemical heat decreases. In addition, the chemical heat sink increases with inlet water content, and the maximal value of chemical heat sink has increased by about 50% as inlet water content increases from 5% to 10%.

Suggested Citation

  • Feng, Yu & Liu, Yuna & Cao, Yong & Gong, Keyu & Liu, Shuyuan & Qin, Jiang, 2020. "Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels," Energy, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219324338
    DOI: 10.1016/j.energy.2019.116738
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219324338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116738?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Duo & Yang, Shengbo & Zhang, Silong & Qin, Jiang & Bao, Wen, 2015. "Thermodynamic analysis on optimum performance of scramjet engine at high Mach numbers," Energy, Elsevier, vol. 90(P1), pages 1046-1054.
    2. Zhang, Duo & Qin, Jiang & Feng, Yu & Ren, Fengzhi & Bao, Wen, 2014. "Performance evaluation of power generation system with fuel vapor turbine onboard hydrocarbon fueled scramjets," Energy, Elsevier, vol. 77(C), pages 732-741.
    3. Bao, Wen & Zhang, Silong & Qin, Jiang & Zhou, Weixing & Xie, Kaili, 2014. "Numerical analysis of flowing cracked hydrocarbon fuel inside cooling channels in view of thermal management," Energy, Elsevier, vol. 67(C), pages 149-161.
    4. Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Zhang, Duo & Bao, Wen & Han, Jiecai, 2016. "Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion," Energy, Elsevier, vol. 114(C), pages 1100-1106.
    5. Rahimpour, M.R. & Dehnavi, M.R. & Allahgholipour, F. & Iranshahi, D. & Jokar, S.M., 2012. "Assessment and comparison of different catalytic coupling exothermic and endothermic reactions: A review," Applied Energy, Elsevier, vol. 99(C), pages 496-512.
    6. Yang, Qingchun & Chang, Juntao & Bao, Wen, 2014. "Thermodynamic analysis on specific thrust of the hydrocarbon fueled scramjet," Energy, Elsevier, vol. 76(C), pages 552-558.
    7. Jiang, Yuguang & Xu, Yaxing & Zhang, Silong & Chetehouna, Khaled & Gascoin, Nicolas & Qin, Jiang & Bao, Wen, 2017. "Parametric study on the distribution of flow rate and heat sink utilization in cooling channels of advanced aero-engines," Energy, Elsevier, vol. 138(C), pages 1056-1068.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Hongbo & Wang, Renting & Bao, Zewei, 2024. "Effect of secondary flow and secondary reactions on pyrolysis and heat transfer of supercritical hydrocarbon aviation fuel in a U-bend tube," Energy, Elsevier, vol. 292(C).
    2. Bai, Yuanqi & Wang, Ying & Wang, Xiaochen & Zhou, Qiongyang & Duan, Qimeng, 2021. "Development of physical-chemical surrogate models and skeletal mechanism for the spray and combustion simulation of RP-3 kerosene fuels," Energy, Elsevier, vol. 215(PB).
    3. Ambe Verma, Kumari & Murari Pandey, Krishna & Ray, Mukul & Kumar Sharma, Kaushal, 2021. "Effect of transverse fuel injection system on combustion efficiency in scramjet combustor," Energy, Elsevier, vol. 218(C).
    4. Cheng, Kunlin & Xu, Jing & Dang, Chaolei & Qin, Jiang & Jing, Wuxing, 2022. "Performance evaluation of fuel indirect cooling based thermal management system using liquid metal for hydrocarbon-fueled scramjet," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Zhang, Duo & Bao, Wen & Han, Jiecai, 2016. "Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion," Energy, Elsevier, vol. 114(C), pages 1100-1106.
    2. Wang, Youyin & Hou, Wenxin & Zhang, Junlong & Tang, Jingfeng & Chang, Juntao & Bao, Wen, 2021. "Research on the operating boundary of the dual mode scramjet with a constant area combustor through thermodynamic cycle analysis," Energy, Elsevier, vol. 216(C).
    3. Ambe Verma, Kumari & Murari Pandey, Krishna & Ray, Mukul & Kumar Sharma, Kaushal, 2021. "Effect of transverse fuel injection system on combustion efficiency in scramjet combustor," Energy, Elsevier, vol. 218(C).
    4. Xiong, Yuefei & Qin, Jiang & Cheng, Kunlin & Wang, Youyin, 2020. "Influence of water injection on performance of scramjet engine," Energy, Elsevier, vol. 201(C).
    5. Li, Xin & Zhang, Silong & Ye, Mai & Qin, Jiang & Bao, Wen & Cui, Naigang & Liu, Xiaoyong & Zhou, Chaoying, 2020. "Effect of enhanced heat transfer structures on the chemical recuperation process of advanced aero-engine," Energy, Elsevier, vol. 211(C).
    6. Li, Chaolong & Xia, Zhixun & Ma, Likun & Chen, Binbin & Feng, Yunchao & Zhang, Jiarui & Duan, Yifan, 2023. "Performance analysis on the specific impulse and specific thrust of scramjet with a quasi-one-dimensional model," Energy, Elsevier, vol. 267(C).
    7. Zhang, Tiantian & Wang, Zhenguo & Huang, Wei & Ingham, Derek & Ma, Lin & Porkashanian, Mohamed, 2020. "An analysis tool of the rocket-based combined cycle engine and its application in the two-stage-to-orbit mission," Energy, Elsevier, vol. 193(C).
    8. Yu, Xuanfei & Wang, Cong & Yu, Daren, 2019. "Precooler-design & engine-performance conjugated optimization for fuel direct precooled airbreathing propulsion," Energy, Elsevier, vol. 170(C), pages 546-556.
    9. Wang, Cong & Yu, Xuanfei & Pan, Xin & Qin, Jiang & Huang, Hongyan, 2022. "Thermodynamic optimization of the indirect precooled engine cycle using the method of cascade utilization of cold sources," Energy, Elsevier, vol. 238(PB).
    10. Zhang, Duo & Qin, Jiang & Feng, Yu & Ren, Fengzhi & Bao, Wen, 2014. "Performance evaluation of power generation system with fuel vapor turbine onboard hydrocarbon fueled scramjets," Energy, Elsevier, vol. 77(C), pages 732-741.
    11. Li, Xiaojie & Huang, Xiaobin & Liu, Hong & Du, Jianke, 2020. "Fuel reactivity controlled self-starting and propulsion performance of a scramjet: A model investigation," Energy, Elsevier, vol. 195(C).
    12. Yu, Xuanfei & Pan, Xin & Zheng, Jialin & Wang, Cong & Yu, Daren, 2017. "Thermodynamic spectrum of direct precooled airbreathing propulsion," Energy, Elsevier, vol. 135(C), pages 777-787.
    13. Wang, Cong & Yu, Xuanfei & Ha, Chan & Liu, Zekuan & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2023. "Thermodynamic analysis for a novel chemical precooling turbojet engine based on a multi-stage precooling-compression cycle," Energy, Elsevier, vol. 262(PA).
    14. Seyedmatin, Pourya & Karimian, Saeed & Rostamzadeh, Hadi & Amidpour, Majid, 2020. "Electricity and hydrogen co-production via scramjet multi-expansion open cooling cycle coupled with a PEM electrolyzer," Energy, Elsevier, vol. 199(C).
    15. Ma, Guangwei & Zhao, Guoyan & Sun, Mingbo & Xiong, Dapeng & Li, Fan & Liu, Mingjiang & Wang, Hongbo, 2024. "On compression level of hypersonic airflow in high-mach scramjet," Energy, Elsevier, vol. 295(C).
    16. Tian, Ke & Tang, Zicheng & Wang, Jin & Ma, Ting & Zeng, Min & Wang, Qiuwang, 2022. "Numerical investigation of pyrolysis and surface coking of hydrocarbon fuel in the regenerative cooling channel," Energy, Elsevier, vol. 260(C).
    17. Yiwei Dong & Ertai Wang & Yancheng You & Chunping Yin & Zongpu Wu, 2019. "Thermal Protection System and Thermal Management for Combined-Cycle Engine: Review and Prospects," Energies, MDPI, vol. 12(2), pages 1-51, January.
    18. Wang, Cong & Cheng, Kunlin & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Performance comparison of three chemical precooled turbine engine cycles using methanol and n-decane as the precooling fuels," Energy, Elsevier, vol. 249(C).
    19. Zhang, Duo & Yang, Shengbo & Zhang, Silong & Qin, Jiang & Bao, Wen, 2015. "Thermodynamic analysis on optimum performance of scramjet engine at high Mach numbers," Energy, Elsevier, vol. 90(P1), pages 1046-1054.
    20. Mengqiang Dong & Hongyan Huang, 2023. "Effect of Rotating Channel Turning Section Clearance Size on Heat Transfer Characteristics of Supercritical Pressure Hydrocarbon Fuel," Energies, MDPI, vol. 16(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219324338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.