Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2016.08.049
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, Yaping & Guo, Zhanwei & Wu, Jiafeng & Zhang, Zhi & Hua, Junye, 2015. "Energy and exergy analysis of integrated system of ammonia–water Kalina–Rankine cycle," Energy, Elsevier, vol. 90(P2), pages 2028-2037.
- Zhang, Duo & Yang, Shengbo & Zhang, Silong & Qin, Jiang & Bao, Wen, 2015. "Thermodynamic analysis on optimum performance of scramjet engine at high Mach numbers," Energy, Elsevier, vol. 90(P1), pages 1046-1054.
- Qin, Jiang & Zhang, Silong & Bao, Wen & Zhou, Weixing & Yu, Daren, 2013. "Thermal management method of fuel in advanced aeroengines," Energy, Elsevier, vol. 49(C), pages 459-468.
- Şöhret, Yasin & Açıkkalp, Emin & Hepbasli, Arif & Karakoc, T. Hikmet, 2015. "Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts," Energy, Elsevier, vol. 90(P2), pages 1219-1228.
- Zhang, Duo & Qin, Jiang & Feng, Yu & Ren, Fengzhi & Bao, Wen, 2014. "Performance evaluation of power generation system with fuel vapor turbine onboard hydrocarbon fueled scramjets," Energy, Elsevier, vol. 77(C), pages 732-741.
- Wang, Hsueh-Sheng & Huang, Kuo-Yang & Huang, Yuh-Jeen & Su, Yu-Chuan & Tseng, Fan-Gang, 2015. "A low-temperature partial-oxidation-methanol micro reformer with high fuel conversion rate and hydrogen production yield," Applied Energy, Elsevier, vol. 138(C), pages 21-30.
- Bao, Wen & Zhang, Silong & Qin, Jiang & Zhou, Weixing & Xie, Kaili, 2014. "Numerical analysis of flowing cracked hydrocarbon fuel inside cooling channels in view of thermal management," Energy, Elsevier, vol. 67(C), pages 149-161.
- Caton, Jerald A, 2000. "On the destruction of availability (exergy) due to combustion processes — with specific application to internal-combustion engines," Energy, Elsevier, vol. 25(11), pages 1097-1117.
- Selwynraj, A. Immanuel & Iniyan, S. & Polonsky, Guy & Suganthi, L. & Kribus, Abraham, 2015. "Exergy analysis and annual exergetic performance evaluation of solar hybrid STIG (steam injected gas turbine) cycle for Indian conditions," Energy, Elsevier, vol. 80(C), pages 414-427.
- Zhang, Xiaosong & Han, Wei & Hong, Hui & Jin, Hongguang, 2009. "A chemical intercooling gas turbine cycle with chemical-looping combustion," Energy, Elsevier, vol. 34(12), pages 2131-2136.
- Zhang, Silong & Qin, Jiang & Bao, Wen & Feng, Yu & Xie, Kaili, 2014. "Thermal management of fuel in advanced aeroengine in view of chemical recuperation," Energy, Elsevier, vol. 77(C), pages 201-211.
- Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2014. "The energetic performance of a novel hybrid solar thermal & chemical looping combustion plant," Applied Energy, Elsevier, vol. 132(C), pages 74-85.
- Chandramouli, R. & Srinivasa Rao, M.S.S. & Ramji, K., 2015. "Energy and exergy based thermodynamic analysis of reheat and regenerative Braysson cycle," Energy, Elsevier, vol. 90(P2), pages 1848-1858.
- Yang, Qingchun & Chang, Juntao & Bao, Wen, 2014. "Thermodynamic analysis on specific thrust of the hydrocarbon fueled scramjet," Energy, Elsevier, vol. 76(C), pages 552-558.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Youyin & Hou, Wenxin & Zhang, Junlong & Tang, Jingfeng & Chang, Juntao & Bao, Wen, 2021. "Research on the operating boundary of the dual mode scramjet with a constant area combustor through thermodynamic cycle analysis," Energy, Elsevier, vol. 216(C).
- Li, Xin & Zhang, Silong & Ye, Mai & Qin, Jiang & Bao, Wen & Cui, Naigang & Liu, Xiaoyong & Zhou, Chaoying, 2020. "Effect of enhanced heat transfer structures on the chemical recuperation process of advanced aero-engine," Energy, Elsevier, vol. 211(C).
- Ambe Verma, Kumari & Murari Pandey, Krishna & Ray, Mukul & Kumar Sharma, Kaushal, 2021. "Effect of transverse fuel injection system on combustion efficiency in scramjet combustor," Energy, Elsevier, vol. 218(C).
- Feng, Yu & Liu, Yuna & Cao, Yong & Gong, Keyu & Liu, Shuyuan & Qin, Jiang, 2020. "Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels," Energy, Elsevier, vol. 193(C).
- Xiong, Yuefei & Qin, Jiang & Cheng, Kunlin & Wang, Youyin, 2020. "Influence of water injection on performance of scramjet engine," Energy, Elsevier, vol. 201(C).
- Tian, Ke & Tang, Zicheng & Wang, Jin & Ma, Ting & Zeng, Min & Wang, Qiuwang, 2022. "Numerical investigation of pyrolysis and surface coking of hydrocarbon fuel in the regenerative cooling channel," Energy, Elsevier, vol. 260(C).
- Yiwei Dong & Ertai Wang & Yancheng You & Chunping Yin & Zongpu Wu, 2019. "Thermal Protection System and Thermal Management for Combined-Cycle Engine: Review and Prospects," Energies, MDPI, vol. 12(2), pages 1-51, January.
- Wang, Cong & Feng, Yu & Liu, Zekuan & Wang, Yilin & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Assessment of thermodynamic performance and CO2 emission reduction for a supersonic precooled turbine engine cycle fueled with a new green fuel of ammonia," Energy, Elsevier, vol. 261(PA).
- Li, Ruixiong & Wang, Huanran & Zhang, Haoran, 2019. "Dynamic simulation of a cooling, heating and power system based on adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 138(C), pages 326-339.
- Kunlin Cheng & Yu Feng & Chuanwen Lv & Silong Zhang & Jiang Qin & Wen Bao, 2017. "Performance Evaluation of Waste Heat Recovery Systems Based on Semiconductor Thermoelectric Generators for Hypersonic Vehicles," Energies, MDPI, vol. 10(4), pages 1-16, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Feng, Yu & Liu, Yuna & Cao, Yong & Gong, Keyu & Liu, Shuyuan & Qin, Jiang, 2020. "Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels," Energy, Elsevier, vol. 193(C).
- Wang, Youyin & Hou, Wenxin & Zhang, Junlong & Tang, Jingfeng & Chang, Juntao & Bao, Wen, 2021. "Research on the operating boundary of the dual mode scramjet with a constant area combustor through thermodynamic cycle analysis," Energy, Elsevier, vol. 216(C).
- Li, Chaolong & Xia, Zhixun & Ma, Likun & Chen, Binbin & Feng, Yunchao & Zhang, Jiarui & Duan, Yifan, 2023. "Performance analysis on the specific impulse and specific thrust of scramjet with a quasi-one-dimensional model," Energy, Elsevier, vol. 267(C).
- Zhang, Silong & Cui, Naigang & Xiong, Yuefei & Feng, Yu & Qin, Jiang & Bao, Wen, 2017. "Effect of channel aspect ratio on chemical recuperation process in advanced aeroengines," Energy, Elsevier, vol. 123(C), pages 9-19.
- Li, Xin & Zhang, Silong & Ye, Mai & Qin, Jiang & Bao, Wen & Cui, Naigang & Liu, Xiaoyong & Zhou, Chaoying, 2020. "Effect of enhanced heat transfer structures on the chemical recuperation process of advanced aero-engine," Energy, Elsevier, vol. 211(C).
- Zhang, Duo & Yang, Shengbo & Zhang, Silong & Qin, Jiang & Bao, Wen, 2015. "Thermodynamic analysis on optimum performance of scramjet engine at high Mach numbers," Energy, Elsevier, vol. 90(P1), pages 1046-1054.
- Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Wang, Ke & Fan, Wei & Lu, Wei & Chen, Fan & Zhang, Qibin & Yan, Chuanjun, 2014. "Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process," Energy, Elsevier, vol. 71(C), pages 605-614.
- Yu, Xuanfei & Wang, Cong & Yu, Daren, 2019. "Precooler-design & engine-performance conjugated optimization for fuel direct precooled airbreathing propulsion," Energy, Elsevier, vol. 170(C), pages 546-556.
- Wang, Cong & Yu, Xuanfei & Pan, Xin & Qin, Jiang & Huang, Hongyan, 2022. "Thermodynamic optimization of the indirect precooled engine cycle using the method of cascade utilization of cold sources," Energy, Elsevier, vol. 238(PB).
- Yu, Xuanfei & Pan, Xin & Zheng, Jialin & Wang, Cong & Yu, Daren, 2017. "Thermodynamic spectrum of direct precooled airbreathing propulsion," Energy, Elsevier, vol. 135(C), pages 777-787.
- Wang, Cong & Yu, Xuanfei & Ha, Chan & Liu, Zekuan & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2023. "Thermodynamic analysis for a novel chemical precooling turbojet engine based on a multi-stage precooling-compression cycle," Energy, Elsevier, vol. 262(PA).
- Dang, Chaolei & Cheng, Kunlin & Fan, Junhao & Wang, Yilin & Qin, Jiang & Liu, Guodong, 2023. "Performance analysis of fuel vapor turbine and closed-Brayton-cycle combined power generation system for hypersonic vehicles," Energy, Elsevier, vol. 266(C).
- Cheng, Kunlin & Xu, Jing & Dang, Chaolei & Qin, Jiang & Jing, Wuxing, 2022. "Performance evaluation of fuel indirect cooling based thermal management system using liquid metal for hydrocarbon-fueled scramjet," Energy, Elsevier, vol. 260(C).
- Wang, Cong & Cheng, Kunlin & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Performance comparison of three chemical precooled turbine engine cycles using methanol and n-decane as the precooling fuels," Energy, Elsevier, vol. 249(C).
- Zhang, Tiantian & Wang, Zhenguo & Huang, Wei & Ingham, Derek & Ma, Lin & Porkashanian, Mohamed, 2020. "An analysis tool of the rocket-based combined cycle engine and its application in the two-stage-to-orbit mission," Energy, Elsevier, vol. 193(C).
- Ambe Verma, Kumari & Murari Pandey, Krishna & Ray, Mukul & Kumar Sharma, Kaushal, 2021. "Effect of transverse fuel injection system on combustion efficiency in scramjet combustor," Energy, Elsevier, vol. 218(C).
- Xiong, Yuefei & Qin, Jiang & Cheng, Kunlin & Wang, Youyin, 2020. "Influence of water injection on performance of scramjet engine," Energy, Elsevier, vol. 201(C).
- Zhang, Silong & Qin, Jiang & Bao, Wen & Feng, Yu & Xie, Kaili, 2014. "Thermal management of fuel in advanced aeroengine in view of chemical recuperation," Energy, Elsevier, vol. 77(C), pages 201-211.
- Zhang, Duo & Qin, Jiang & Feng, Yu & Ren, Fengzhi & Bao, Wen, 2014. "Performance evaluation of power generation system with fuel vapor turbine onboard hydrocarbon fueled scramjets," Energy, Elsevier, vol. 77(C), pages 732-741.
More about this item
Keywords
Cascade utilization; Chemical recuperation; Regenerative cooling; Exergy; Scramjet;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:114:y:2016:i:c:p:1100-1106. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.