IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220316881.html
   My bibliography  Save this article

Effect of enhanced heat transfer structures on the chemical recuperation process of advanced aero-engine

Author

Listed:
  • Li, Xin
  • Zhang, Silong
  • Ye, Mai
  • Qin, Jiang
  • Bao, Wen
  • Cui, Naigang
  • Liu, Xiaoyong
  • Zhou, Chaoying

Abstract

Regenerative cooling process of advanced aero-engine with endothermic hydrocarbon fuel is a typical chemical recuperation process that always happens in heated cooling channels with severe thermal stratification. In order to study the effect of enhanced heat transfer structures on the heat sink utilization and non-uniform chemical recuperation process, numerical models of cracking hydrocarbon fuel flow in the cooling channel with the micro-rib and dimple embedded in one-step reaction model were built and validated. The results indicate that the dimple and micro-rib could enhance heat transfer but bring drawbacks to the chemical recuperation process especially under higher heat flux due to the nonlinearity of thermal cracking reaction, which mainly happens in the thermal boundary layer and velocity boundary layer. And the micro-rib will cause larger disturbance than dimple because it gives global enhancement on flow mixing between the mainstream and flow near the wall. Besides, increasing micro-rib height and decreasing its width could not change the situation but make it worse although the nonuniformity of heat absorption is remarkably alleviated. Compared with the single micro-rib unit, the periodic micro-rib array has a significantly continuous influence on heat transfer and heat absorption in the chemical recuperation process of cracking hydrocarbon fuel.

Suggested Citation

  • Li, Xin & Zhang, Silong & Ye, Mai & Qin, Jiang & Bao, Wen & Cui, Naigang & Liu, Xiaoyong & Zhou, Chaoying, 2020. "Effect of enhanced heat transfer structures on the chemical recuperation process of advanced aero-engine," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220316881
    DOI: 10.1016/j.energy.2020.118580
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220316881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Silong & Cui, Naigang & Xiong, Yuefei & Feng, Yu & Qin, Jiang & Bao, Wen, 2017. "Effect of channel aspect ratio on chemical recuperation process in advanced aeroengines," Energy, Elsevier, vol. 123(C), pages 9-19.
    2. Jiang, Yuguang & Xu, Yaxing & Zhang, Silong & Chetehouna, Khaled & Gascoin, Nicolas & Qin, Jiang & Bao, Wen, 2017. "Parametric study on the distribution of flow rate and heat sink utilization in cooling channels of advanced aero-engines," Energy, Elsevier, vol. 138(C), pages 1056-1068.
    3. Ni, Mingjiang & Yang, Tianfeng & Xiao, Gang & Ni, Dong & Zhou, Xin & Liu, Huanlei & Sultan, Umair & Chen, Jinli & Luo, Zhongyang & Cen, Kefa, 2017. "Thermodynamic analysis of a gas turbine cycle combined with fuel reforming for solar thermal power generation," Energy, Elsevier, vol. 137(C), pages 20-30.
    4. Qin, Jiang & Zhang, Silong & Bao, Wen & Zhou, Weixing & Yu, Daren, 2013. "Thermal management method of fuel in advanced aeroengines," Energy, Elsevier, vol. 49(C), pages 459-468.
    5. Gaber, Christian & Demuth, Martin & Prieler, René & Schluckner, Christoph & Hochenauer, Christoph, 2018. "An experimental study of a thermochemical regeneration waste heat recovery process using a reformer unit," Energy, Elsevier, vol. 155(C), pages 381-391.
    6. Zeng, Meirong & Yuan, Wenhao & Li, Wei & Zhang, Yan & Wang, Yizun, 2018. "Investigation of n-dodecane pyrolysis at various pressures and the development of a comprehensive combustion model," Energy, Elsevier, vol. 155(C), pages 152-161.
    7. Bao, Wen & Zhang, Silong & Qin, Jiang & Zhou, Weixing & Xie, Kaili, 2014. "Numerical analysis of flowing cracked hydrocarbon fuel inside cooling channels in view of thermal management," Energy, Elsevier, vol. 67(C), pages 149-161.
    8. Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Zhang, Duo & Bao, Wen & Han, Jiecai, 2016. "Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion," Energy, Elsevier, vol. 114(C), pages 1100-1106.
    9. Zhang, Silong & Qin, Jiang & Bao, Wen & Feng, Yu & Xie, Kaili, 2014. "Thermal management of fuel in advanced aeroengine in view of chemical recuperation," Energy, Elsevier, vol. 77(C), pages 201-211.
    10. Bai, Zhang & Liu, Taixiu & Liu, Qibin & Lei, Jing & Gong, Liang & Jin, Hongguang, 2018. "Performance investigation of a new cooling, heating and power system with methanol decomposition based chemical recuperation process," Applied Energy, Elsevier, vol. 229(C), pages 1152-1163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Penghua & Wang, Renting & Liu, Shaobei & Bao, Zewei, 2023. "Experimental study on the thermal-hydraulic performance of a tube-in-tube helical coil air–fuel heat exchanger for an aero-engine," Energy, Elsevier, vol. 267(C).
    2. Tian, Ke & Tang, Zicheng & Wang, Jin & Ma, Ting & Zeng, Min & Wang, Qiuwang, 2022. "Numerical investigation of pyrolysis and surface coking of hydrocarbon fuel in the regenerative cooling channel," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Youyin & Hou, Wenxin & Zhang, Junlong & Tang, Jingfeng & Chang, Juntao & Bao, Wen, 2021. "Research on the operating boundary of the dual mode scramjet with a constant area combustor through thermodynamic cycle analysis," Energy, Elsevier, vol. 216(C).
    2. Feng, Yu & Liu, Yuna & Cao, Yong & Gong, Keyu & Liu, Shuyuan & Qin, Jiang, 2020. "Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels," Energy, Elsevier, vol. 193(C).
    3. Zhang, Silong & Cui, Naigang & Xiong, Yuefei & Feng, Yu & Qin, Jiang & Bao, Wen, 2017. "Effect of channel aspect ratio on chemical recuperation process in advanced aeroengines," Energy, Elsevier, vol. 123(C), pages 9-19.
    4. Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Zhang, Duo & Bao, Wen & Han, Jiecai, 2016. "Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion," Energy, Elsevier, vol. 114(C), pages 1100-1106.
    5. Tian, Ke & Tang, Zicheng & Wang, Jin & Ma, Ting & Zeng, Min & Wang, Qiuwang, 2022. "Numerical investigation of pyrolysis and surface coking of hydrocarbon fuel in the regenerative cooling channel," Energy, Elsevier, vol. 260(C).
    6. Yiwei Dong & Ertai Wang & Yancheng You & Chunping Yin & Zongpu Wu, 2019. "Thermal Protection System and Thermal Management for Combined-Cycle Engine: Review and Prospects," Energies, MDPI, vol. 12(2), pages 1-51, January.
    7. Xu, Jing & Cheng, Kunlin & Dang, Chaolei & Wang, Yilin & Liu, Zekuan & Qin, Jiang & Liu, Xiaoyong, 2023. "Performance comparison of liquid metal cooling system and regenerative cooling system in supersonic combustion ramjet engines," Energy, Elsevier, vol. 275(C).
    8. Wang, Ke & Fan, Wei & Lu, Wei & Chen, Fan & Zhang, Qibin & Yan, Chuanjun, 2014. "Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process," Energy, Elsevier, vol. 71(C), pages 605-614.
    9. Mengqiang Dong & Hongyan Huang, 2023. "Effect of Rotating Channel Turning Section Clearance Size on Heat Transfer Characteristics of Supercritical Pressure Hydrocarbon Fuel," Energies, MDPI, vol. 16(16), pages 1-18, August.
    10. Zhang, Silong & Qin, Jiang & Bao, Wen & Feng, Yu & Xie, Kaili, 2014. "Thermal management of fuel in advanced aeroengine in view of chemical recuperation," Energy, Elsevier, vol. 77(C), pages 201-211.
    11. Yang, Qingchun & Chang, Juntao & Bao, Wen, 2014. "Thermodynamic analysis on specific thrust of the hydrocarbon fueled scramjet," Energy, Elsevier, vol. 76(C), pages 552-558.
    12. Liu, Penghua & Wang, Renting & Liu, Shaobei & Bao, Zewei, 2023. "Experimental study on the thermal-hydraulic performance of a tube-in-tube helical coil air–fuel heat exchanger for an aero-engine," Energy, Elsevier, vol. 267(C).
    13. Zhang, Huining & Zhou, Peiling & Yuan, Fei, 2021. "Effects of ladle lid or online preheating on heat preservation of ladle linings and temperature drop of molten steel," Energy, Elsevier, vol. 214(C).
    14. Sung-rok Hwang & Hyung Ju Lee, 2023. "Comparison and Evaluation of Transport Property Prediction Performance of Supercritical Hydrocarbon Aviation Fuels and Their Pyrolyzed Products via Endothermic Reactions," Energies, MDPI, vol. 16(13), pages 1-15, July.
    15. Cao, Yan & Habibi, Hamed & Zoghi, Mohammad & Raise, Amir, 2021. "Waste heat recovery of a combined regenerative gas turbine - recompression supercritical CO2 Brayton cycle driven by a hybrid solar-biomass heat source for multi-generation purpose: 4E analysis and pa," Energy, Elsevier, vol. 236(C).
    16. Yuan, Yu & Bai, Zhang & Zhou, Shengdong & Zheng, Bo & Hu, Wenxin, 2022. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Flexible demand response characteristics," Applied Energy, Elsevier, vol. 325(C).
    17. Pashchenko, Dmitry, 2019. "Pressure drop in the thermochemical recuperators filled with the catalysts of various shapes: A combined experimental and numerical investigation," Energy, Elsevier, vol. 166(C), pages 462-470.
    18. Wang, Cong & Feng, Yu & Liu, Zekuan & Wang, Yilin & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Assessment of thermodynamic performance and CO2 emission reduction for a supersonic precooled turbine engine cycle fueled with a new green fuel of ammonia," Energy, Elsevier, vol. 261(PA).
    19. Zhou, Shengdong & Bai, Zhang & Li, Qi & Yuan, Yu & Wang, Shuoshuo, 2024. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Optimized recuperation regulation with syngas storage," Applied Energy, Elsevier, vol. 353(PB).
    20. Pashchenko, Dmitry & Karpilov, Igor & Polyakov, Mikhail & Popov, Stanislav K., 2024. "Techno-economic evaluation of a thermochemical waste-heat recuperation system for industrial furnace application: Operating cost analysis," Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220316881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.