IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v215y2021ipbs0360544220321976.html
   My bibliography  Save this article

Development of physical-chemical surrogate models and skeletal mechanism for the spray and combustion simulation of RP-3 kerosene fuels

Author

Listed:
  • Bai, Yuanqi
  • Wang, Ying
  • Wang, Xiaochen
  • Zhou, Qiongyang
  • Duan, Qimeng

Abstract

RP-3 kerosene is a widely used fuel for civil and military transportation in China. Two RP-3 kerosene surrogates (UM1 and UM2) were proposed by genetic algorithm optimization methodology, aiming to simulate viscosity, density, surface tension, cetane number, lower heating value, H/C ratio and molecular weight along with sooting tendency under spray and engine relevant conditions. The RP-3 kerosene surrogates were composed of four components including n-dodecane, 2,2,4,6,6-pentamethylheptane, decalin and n-propylbenzene (UM1, 0.3374/0.3042/0.1954/0.163. UM2, 0.1449/0.3706/0.2059/0.0195/0.2591 by mole fraction). The carbon number of n-dodecane and 2,2,4,6,6-pentamethylheptane was both much closer to that of the real RP-3. Based on the proposed surrogates, a skeletal RP-3 surrogate chemical reaction mechanism was developed by decoupling methodology. The skeletal RP-3 surrogate mechanism was reduced only including 89 species and 225 reactions, which was efficient and reliable in CFD simulation. The surrogate models were validated during spray process under vapor and nonevaporating environment. The skeletal mechanism was verified against the foundational experiments such as ignition delay times, species concentrations and laminar flame speed under wide conditions. The applicability of skeletal mechanism was also well verified with our test data from a real compression-ignition engine.

Suggested Citation

  • Bai, Yuanqi & Wang, Ying & Wang, Xiaochen & Zhou, Qiongyang & Duan, Qimeng, 2021. "Development of physical-chemical surrogate models and skeletal mechanism for the spray and combustion simulation of RP-3 kerosene fuels," Energy, Elsevier, vol. 215(PB).
  • Handle: RePEc:eee:energy:v:215:y:2021:i:pb:s0360544220321976
    DOI: 10.1016/j.energy.2020.119090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220321976
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bayındır, Hasan & Işık, Mehmet Zerrakki & Argunhan, Zeki & Yücel, Halit Lütfü & Aydın, Hüseyin, 2017. "Combustion, performance and emissions of a diesel power generator fueled with biodiesel-kerosene and biodiesel-kerosene-diesel blends," Energy, Elsevier, vol. 123(C), pages 241-251.
    2. Qian, Yong & Yu, Liang & Li, Zilong & Zhang, Yahui & Xu, Leilei & Zhou, Qiyan & Han, Dong & Lu, Xingcai, 2018. "A new methodology for diesel surrogate fuel formulation: Bridging fuel fundamental properties and real engine combustion characteristics," Energy, Elsevier, vol. 148(C), pages 424-447.
    3. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
    4. Sundararaj, Ramraj H. & Kumar, Roshan Dinesh & Raut, Anoop Kumar & Sekar, T. Chandra & Pandey, Vivek & Kushari, Abhijit & Puri, S.K., 2019. "Combustion and emission characteristics from biojet fuel blends in a gas turbine combustor," Energy, Elsevier, vol. 182(C), pages 689-705.
    5. Yang, S.I. & Wu, M.S. & Hsu, T.C., 2017. "Spray combustion characteristics of kerosene/bio-oil part I: Experimental study," Energy, Elsevier, vol. 119(C), pages 26-36.
    6. Sogut, M. Ziya & Seçgin, Ömer & Ozkaynak, Süleyman, 2019. "Investigation of thermodynamics performance of alternative jet fuels based on decreasing threat of paraffinic and sulfur," Energy, Elsevier, vol. 181(C), pages 1114-1120.
    7. Feng, Yu & Liu, Yuna & Cao, Yong & Gong, Keyu & Liu, Shuyuan & Qin, Jiang, 2020. "Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels," Energy, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Yuanqi & Wang, Ying & Wang, Xiaochen, 2021. "Development of a skeletal mechanism for four-component biodiesel surrogate fuel with PAH," Renewable Energy, Elsevier, vol. 171(C), pages 266-274.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Zoheiry, Radwan M. & EL-Seesy, Ahmed I. & Attia, Ali M.A. & He, Zhixia & El-Batsh, Hesham M., 2020. "Combustion and emission characteristics of Jojoba biodiesel-jet A1 mixtures applying a lean premixed pre-vaporized combustion techniques: An experimental investigation," Renewable Energy, Elsevier, vol. 162(C), pages 2227-2245.
    2. Kroyan, Yuri & Wojcieszyk, Michał & Kaario, Ossi & Larmi, Martti, 2022. "Modeling the impact of sustainable aviation fuel properties on end-use performance and emissions in aircraft jet engines," Energy, Elsevier, vol. 255(C).
    3. Alherbawi, Mohammad & McKay, Gordon & Mackey, Hamish R. & Al-Ansari, Tareq, 2021. "Jatropha curcas for jet biofuel production: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Ziya Sogut, M., 2021. "New approach for assessment of environmental effects based on entropy optimization of jet engine," Energy, Elsevier, vol. 234(C).
    5. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
    6. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Özbek, Emre & Yalin, Gorkem & Ekici, Selcuk & Karakoc, T. Hikmet, 2020. "Evaluation of design methodology, limitations, and iterations of a hydrogen fuelled hybrid fuel cell mini UAV," Energy, Elsevier, vol. 213(C).
    8. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    9. Han, Hongbo & Wang, Renting & Bao, Zewei, 2024. "Effect of secondary flow and secondary reactions on pyrolysis and heat transfer of supercritical hydrocarbon aviation fuel in a U-bend tube," Energy, Elsevier, vol. 292(C).
    10. Yousefzadeh, H. & Tavakolpour-Saleh, A.R., 2021. "A novel unified dynamic-thermodynamic method for estimating damping and predicting performance of kinematic Stirling engines," Energy, Elsevier, vol. 224(C).
    11. Edmundas Kazimieras Zavadskas & Audrius Čereška & Jonas Matijošius & Alfredas Rimkus & Romualdas Bausys, 2019. "Internal Combustion Engine Analysis of Energy Ecological Parameters by Neutrosophic MULTIMOORA and SWARA Methods," Energies, MDPI, vol. 12(8), pages 1-26, April.
    12. Katriina Sirviö & Seppo Niemi & Sonja Heikkilä & Jukka Kiijärvi & Michaela Hissa & Erkki Hiltunen, 2019. "Feasibility of New Liquid Fuel Blends for Medium-Speed Engines," Energies, MDPI, vol. 12(14), pages 1-10, July.
    13. Hasan AYDOGAN & Emin Cagatay ALTINOK, 2019. "Effects of Using JP8-Diesel Fuel Mixtures in a Pump Injector Engine on Engine Emissions," Proceedings of International Academic Conferences 9412216, International Institute of Social and Economic Sciences.
    14. Iman K. Reksowardojo & Long H. Duong & Rais Zain & Firman Hartono & Septhian Marno & Wawan Rustyawan & Nelliza Putri & Wisasurya Jatiwiramurti & Bayu Prabowo, 2020. "Performance and Exhaust Emissions of a Gas-Turbine Engine Fueled with Biojet/Jet A-1 Blends for the Development of Aviation Biofuel in Tropical Regions," Energies, MDPI, vol. 13(24), pages 1-14, December.
    15. Loganathan, S. & Leenus Jesu Martin, M. & Nagalingam, B. & Prabhu, L., 2018. "Heat release rate and performance simulation of DME fuelled diesel engine using oxygenate correction factor and load correction factor in double Wiebe function," Energy, Elsevier, vol. 150(C), pages 77-91.
    16. Rai, Ranjeet Kumar & Sahoo, Rashmi Rekha, 2019. "Effective power and effective power density analysis for water in diesel emulsion as fuel in diesel engine performance," Energy, Elsevier, vol. 180(C), pages 893-902.
    17. Park, Yeseul & Choi, Minsung & Kim, Dongmin & Lee, Joongsung & Choi, Gyungmin, 2021. "Performance analysis of large-scale industrial gas turbine considering stable combustor operation using novel blended fuel," Energy, Elsevier, vol. 236(C).
    18. Carroll, James & Brazil, William & Howard, Michael & Denny, Eleanor, 2022. "Imperfect emissions information during flight choices and the role of CO2 labelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    19. Yang, S.I. & Wu, M.S. & Hsu, T.C., 2017. "Experimental and numerical simulation study of oxycombustion of fast pyrolysis bio-oil from lignocellulosic biomass," Energy, Elsevier, vol. 126(C), pages 854-867.
    20. Andreas Goldmann & Waldemar Sauter & Marcel Oettinger & Tim Kluge & Uwe Schröder & Joerg R. Seume & Jens Friedrichs & Friedrich Dinkelacker, 2018. "A Study on Electrofuels in Aviation," Energies, MDPI, vol. 11(2), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:215:y:2021:i:pb:s0360544220321976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.