IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipbs036054422102017x.html
   My bibliography  Save this article

Thermodynamic optimization of the indirect precooled engine cycle using the method of cascade utilization of cold sources

Author

Listed:
  • Wang, Cong
  • Yu, Xuanfei
  • Pan, Xin
  • Qin, Jiang
  • Huang, Hongyan

Abstract

To solve the problem of engine performance degradation caused by excessive fuel consumption in the precooled engine cycle, a new optimization method based on the cascade utilization of cold source is proposed, in which the cold sources with different temperature ranges and different working fluids are reasonably matched and adequately utilized. Based on this method, two new optimization cycles are put forward, i.e., the air reheat precooling cycle (ARPC) and the hydrogen reheat precooling cycle (HRPC). To evaluate the performances of these two cycles, a unified model is established. According to the simulation results, the fuel consumption of the HRPC could be reduced by 0–21.04% compared with the traditional precooled engine. Besides, the specific impulse of the HRPC, which can be raised by 16.78% when the heat transfer effectiveness is set to 0.9, is higher than that of the ARPC, which can be increased by 12.64% at most. Moreover, considering the operating constraints, the reduction of the minimum temperature difference of the regenerator and the increase of the pressure recovery coefficient of intake are effective ways to expand the performance boundaries. The results in this paper are beneficial for the performance optimization of the precooled engine cycle.

Suggested Citation

  • Wang, Cong & Yu, Xuanfei & Pan, Xin & Qin, Jiang & Huang, Hongyan, 2022. "Thermodynamic optimization of the indirect precooled engine cycle using the method of cascade utilization of cold sources," Energy, Elsevier, vol. 238(PB).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pb:s036054422102017x
    DOI: 10.1016/j.energy.2021.121769
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422102017X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Xuanfei & Wang, Cong & Yu, Daren, 2019. "Precooler-design & engine-performance conjugated optimization for fuel direct precooled airbreathing propulsion," Energy, Elsevier, vol. 170(C), pages 546-556.
    2. Zhang, Duo & Yang, Shengbo & Zhang, Silong & Qin, Jiang & Bao, Wen, 2015. "Thermodynamic analysis on optimum performance of scramjet engine at high Mach numbers," Energy, Elsevier, vol. 90(P1), pages 1046-1054.
    3. Victor Fernandez-Villace & Guillermo Paniagua, 2013. "Numerical Model of a Variable-Combined-Cycle Engine for Dual Subsonic and Supersonic Cruise," Energies, MDPI, vol. 6(2), pages 1-32, February.
    4. Zhang, Duo & Qin, Jiang & Feng, Yu & Ren, Fengzhi & Bao, Wen, 2014. "Performance evaluation of power generation system with fuel vapor turbine onboard hydrocarbon fueled scramjets," Energy, Elsevier, vol. 77(C), pages 732-741.
    5. Yu, Xuanfei & Wang, Cong & Yu, Daren, 2019. "Thermodynamic assessment on performance extremes of the fuel indirect precooled cycle for hypersonic airbreathing propulsion," Energy, Elsevier, vol. 186(C).
    6. Zhao, Wei & Huang, Chen & Zhao, Qingjun & Ma, Yingqun & Xu, Jianzhong, 2018. "Performance analysis of a pre-cooled and fuel-rich pre-burned mixed-flow turbofan cycle for high speed vehicles," Energy, Elsevier, vol. 154(C), pages 96-109.
    7. Dong, Pengcheng & Tang, Hailong & Chen, Min & Zou, Zhengping, 2018. "Overall performance design of paralleled heat release and compression system for hypersonic aeroengine," Applied Energy, Elsevier, vol. 220(C), pages 36-46.
    8. Yu, Xuanfei & Pan, Xin & Zheng, Jialin & Wang, Cong & Yu, Daren, 2017. "Thermodynamic spectrum of direct precooled airbreathing propulsion," Energy, Elsevier, vol. 135(C), pages 777-787.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hui & Zou, Zhengping & Chen, Yiming & Du, Pengcheng & Fu, Chao & Wang, Yifan, 2023. "Experimental insights into thermal performance of a microtube precooler with drastic coolant properties variation and precooling impacts on turbojet engine operation," Energy, Elsevier, vol. 278(PA).
    2. Lv, Chengkun & Huang, Qian & Wang, Ziao & Chang, Juntao & Yu, Daren, 2024. "Mode transition control law analysis of ammonia MIPCC aeroengine considering inlet–compressor safety matching," Energy, Elsevier, vol. 288(C).
    3. Wang, Cong & Yu, Xuanfei & Ha, Chan & Liu, Zekuan & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2023. "Thermodynamic analysis for a novel chemical precooling turbojet engine based on a multi-stage precooling-compression cycle," Energy, Elsevier, vol. 262(PA).
    4. Ma, Xiaofeng & Jiang, Peixue & Zhu, Yinhai, 2023. "Modeling and performance analysis of a pre-cooling and power generation system based on the supercritical CO2 Brayton cycle on turbine-based combined cycle engines," Energy, Elsevier, vol. 284(C).
    5. Cai, Changpeng & Chen, Haoying & Fang, Juan & Zheng, Qiangang & Chen, Cheng & Zhang, Haibo, 2023. "Thermodynamic analysis of a novel precooled supersonic turbine engine based on aircraft/engine integrated optimal design," Energy, Elsevier, vol. 280(C).
    6. Wang, Cong & Feng, Yu & Liu, Zekuan & Wang, Yilin & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Assessment of thermodynamic performance and CO2 emission reduction for a supersonic precooled turbine engine cycle fueled with a new green fuel of ammonia," Energy, Elsevier, vol. 261(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xuanfei & Wang, Cong & Yu, Daren, 2020. "Series view method based thermodynamic modeling and analysis for innovative precooled aeroengines with different turbine-compressor coupling schemes," Energy, Elsevier, vol. 205(C).
    2. Wang, Cong & Cheng, Kunlin & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Performance comparison of three chemical precooled turbine engine cycles using methanol and n-decane as the precooling fuels," Energy, Elsevier, vol. 249(C).
    3. Wang, Cong & Yu, Xuanfei & Ha, Chan & Liu, Zekuan & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2023. "Thermodynamic analysis for a novel chemical precooling turbojet engine based on a multi-stage precooling-compression cycle," Energy, Elsevier, vol. 262(PA).
    4. Yu, Xuanfei & Wang, Cong & Yu, Daren, 2019. "Precooler-design & engine-performance conjugated optimization for fuel direct precooled airbreathing propulsion," Energy, Elsevier, vol. 170(C), pages 546-556.
    5. Zhang, Tiantian & Wang, Zhenguo & Huang, Wei & Ingham, Derek & Ma, Lin & Porkashanian, Mohamed, 2020. "An analysis tool of the rocket-based combined cycle engine and its application in the two-stage-to-orbit mission," Energy, Elsevier, vol. 193(C).
    6. Wang, Cong & Feng, Yu & Liu, Zekuan & Wang, Yilin & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Assessment of thermodynamic performance and CO2 emission reduction for a supersonic precooled turbine engine cycle fueled with a new green fuel of ammonia," Energy, Elsevier, vol. 261(PA).
    7. Feng, Yu & Liu, Yuna & Cao, Yong & Gong, Keyu & Liu, Shuyuan & Qin, Jiang, 2020. "Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels," Energy, Elsevier, vol. 193(C).
    8. Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Zhang, Duo & Bao, Wen & Han, Jiecai, 2016. "Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion," Energy, Elsevier, vol. 114(C), pages 1100-1106.
    9. Cheng, Kunlin & Qin, Jiang & Zhang, Duo & Bao, Wen & Jing, Wuxing, 2022. "Performance evaluation for a combined power generation system of closed-Brayton-cycle and thermoelectric generator with finite cold source at room temperature on hypersonic vehicles," Energy, Elsevier, vol. 254(PC).
    10. Deng, Li & Chen, Min & Tang, Hailong & Zhang, Jiyuan, 2024. "Performance evaluation of multicombustor engine for Mach3+-Level propulsion system," Energy, Elsevier, vol. 295(C).
    11. Li, Hui & Zou, Zhengping & Chen, Yiming & Du, Pengcheng & Fu, Chao & Wang, Yifan, 2023. "Experimental insights into thermal performance of a microtube precooler with drastic coolant properties variation and precooling impacts on turbojet engine operation," Energy, Elsevier, vol. 278(PA).
    12. Ambe Verma, Kumari & Murari Pandey, Krishna & Ray, Mukul & Kumar Sharma, Kaushal, 2021. "Effect of transverse fuel injection system on combustion efficiency in scramjet combustor," Energy, Elsevier, vol. 218(C).
    13. Pan, Xin & Xiong, Yuefei & Wang, Cong & Qin, Jiang & Zhang, Silong & Bao, Wen, 2022. "Performance analysis of precooled turbojet engine with a low-temperature endothermic fuel," Energy, Elsevier, vol. 248(C).
    14. Li, Xiaojie & Huang, Xiaobin & Liu, Hong & Du, Jianke, 2020. "Fuel reactivity controlled self-starting and propulsion performance of a scramjet: A model investigation," Energy, Elsevier, vol. 195(C).
    15. Yu, Xuanfei & Pan, Xin & Zheng, Jialin & Wang, Cong & Yu, Daren, 2017. "Thermodynamic spectrum of direct precooled airbreathing propulsion," Energy, Elsevier, vol. 135(C), pages 777-787.
    16. Lv, Chengkun & Xu, Haiqi & Chang, Juntao & Wang, Youyin & Chen, Ruoyu & Yu, Daren, 2022. "Mode transition analysis of a turbine-based combined-cycle considering ammonia injection pre-compressor cooling and variable-geometry ram-combustor," Energy, Elsevier, vol. 261(PB).
    17. Ma, Xiaofeng & Jiang, Peixue & Zhu, Yinhai, 2023. "Modeling and performance analysis of a pre-cooling and power generation system based on the supercritical CO2 Brayton cycle on turbine-based combined cycle engines," Energy, Elsevier, vol. 284(C).
    18. Li, Chaolong & Xia, Zhixun & Ma, Likun & Chen, Binbin & Feng, Yunchao & Zhang, Jiarui & Duan, Yifan, 2023. "Performance analysis on the specific impulse and specific thrust of scramjet with a quasi-one-dimensional model," Energy, Elsevier, vol. 267(C).
    19. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
    20. Jiang, Yuguang & Xu, Yaxing & Zhang, Silong & Chetehouna, Khaled & Gascoin, Nicolas & Qin, Jiang & Bao, Wen, 2017. "Parametric study on the distribution of flow rate and heat sink utilization in cooling channels of advanced aero-engines," Energy, Elsevier, vol. 138(C), pages 1056-1068.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pb:s036054422102017x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.