IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v170y2019icp546-556.html
   My bibliography  Save this article

Precooler-design & engine-performance conjugated optimization for fuel direct precooled airbreathing propulsion

Author

Listed:
  • Yu, Xuanfei
  • Wang, Cong
  • Yu, Daren

Abstract

Design study of the precooling heat exchanger specified for high speed airbreathing propulsion was carried out from the perspective of overall engine performance. The precooler proposed for the SABRE engine was adopted as the representative configuration for evaluation. Design procedure of the precooler was developed and incorporated into a cycle analysis model such that the variation in engine performance can be assessed as the design inputs is altered. By means of the differential-evolution algorithm, the design characteristics of the precooler were clarified through the idea of Pareto-Optimality. Precooler total mass and axial length, together with engine specific impulse, was included as optimization objectives on account of the results of parametric analysis. Pareto-optimal-fronts were obtained with the influence of some key design parameters such as the precooling temperature and the intake efficiency was analyzed. The results show that precooler design is a tradeoff between the optimization objectives considered. Selection of a larger precooling temperature helps to increase engine specific impulse and reduce the mass of precooler, although engine specific thrust is decreased slightly, whereas larger intake efficiency is extremely preferred for precooled cycles from not only the performance side of the engine, but more importantly, the geometry side of the precooler.

Suggested Citation

  • Yu, Xuanfei & Wang, Cong & Yu, Daren, 2019. "Precooler-design & engine-performance conjugated optimization for fuel direct precooled airbreathing propulsion," Energy, Elsevier, vol. 170(C), pages 546-556.
  • Handle: RePEc:eee:energy:v:170:y:2019:i:c:p:546-556
    DOI: 10.1016/j.energy.2018.12.192
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218325660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Duo & Yang, Shengbo & Zhang, Silong & Qin, Jiang & Bao, Wen, 2015. "Thermodynamic analysis on optimum performance of scramjet engine at high Mach numbers," Energy, Elsevier, vol. 90(P1), pages 1046-1054.
    2. Zhao, Wei & Huang, Chen & Zhao, Qingjun & Ma, Yingqun & Xu, Jianzhong, 2018. "Performance analysis of a pre-cooled and fuel-rich pre-burned mixed-flow turbofan cycle for high speed vehicles," Energy, Elsevier, vol. 154(C), pages 96-109.
    3. Dong, Pengcheng & Tang, Hailong & Chen, Min & Zou, Zhengping, 2018. "Overall performance design of paralleled heat release and compression system for hypersonic aeroengine," Applied Energy, Elsevier, vol. 220(C), pages 36-46.
    4. Yang, Qingchun & Chang, Juntao & Bao, Wen, 2014. "Thermodynamic analysis on specific thrust of the hydrocarbon fueled scramjet," Energy, Elsevier, vol. 76(C), pages 552-558.
    5. Yu, Xuanfei & Pan, Xin & Zheng, Jialin & Wang, Cong & Yu, Daren, 2017. "Thermodynamic spectrum of direct precooled airbreathing propulsion," Energy, Elsevier, vol. 135(C), pages 777-787.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, Chengkun & Huang, Qian & Lan, Zhu & Chang, Juntao & Yu, Daren, 2023. "Parametric optimization and exergy analysis of a high mach number aeroengine with an ammonia mass injection pre-compressor cooling cycle," Energy, Elsevier, vol. 282(C).
    2. Li, Hui & Zou, Zhengping & Chen, Yiming & Du, Pengcheng & Fu, Chao & Wang, Yifan, 2023. "Experimental insights into thermal performance of a microtube precooler with drastic coolant properties variation and precooling impacts on turbojet engine operation," Energy, Elsevier, vol. 278(PA).
    3. Lv, Chengkun & Huang, Qian & Wang, Ziao & Chang, Juntao & Yu, Daren, 2024. "Mode transition control law analysis of ammonia MIPCC aeroengine considering inlet–compressor safety matching," Energy, Elsevier, vol. 288(C).
    4. Wang, Cong & Yu, Xuanfei & Pan, Xin & Qin, Jiang & Huang, Hongyan, 2022. "Thermodynamic optimization of the indirect precooled engine cycle using the method of cascade utilization of cold sources," Energy, Elsevier, vol. 238(PB).
    5. Pan, Xin & Xiong, Yuefei & Wang, Cong & Qin, Jiang & Zhang, Silong & Bao, Wen, 2022. "Performance analysis of precooled turbojet engine with a low-temperature endothermic fuel," Energy, Elsevier, vol. 248(C).
    6. Yu, Xuanfei & Wang, Cong & Yu, Daren, 2020. "Series view method based thermodynamic modeling and analysis for innovative precooled aeroengines with different turbine-compressor coupling schemes," Energy, Elsevier, vol. 205(C).
    7. Wang, Cong & Feng, Yu & Liu, Zekuan & Wang, Yilin & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Assessment of thermodynamic performance and CO2 emission reduction for a supersonic precooled turbine engine cycle fueled with a new green fuel of ammonia," Energy, Elsevier, vol. 261(PA).
    8. Cheng, Kunlin & Qin, Jiang & Zhang, Duo & Bao, Wen & Jing, Wuxing, 2022. "Performance evaluation for a combined power generation system of closed-Brayton-cycle and thermoelectric generator with finite cold source at room temperature on hypersonic vehicles," Energy, Elsevier, vol. 254(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xuanfei & Wang, Cong & Yu, Daren, 2020. "Series view method based thermodynamic modeling and analysis for innovative precooled aeroengines with different turbine-compressor coupling schemes," Energy, Elsevier, vol. 205(C).
    2. Wang, Cong & Yu, Xuanfei & Pan, Xin & Qin, Jiang & Huang, Hongyan, 2022. "Thermodynamic optimization of the indirect precooled engine cycle using the method of cascade utilization of cold sources," Energy, Elsevier, vol. 238(PB).
    3. Wang, Cong & Cheng, Kunlin & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Performance comparison of three chemical precooled turbine engine cycles using methanol and n-decane as the precooling fuels," Energy, Elsevier, vol. 249(C).
    4. Zhang, Tiantian & Wang, Zhenguo & Huang, Wei & Ingham, Derek & Ma, Lin & Porkashanian, Mohamed, 2020. "An analysis tool of the rocket-based combined cycle engine and its application in the two-stage-to-orbit mission," Energy, Elsevier, vol. 193(C).
    5. Li, Xiaojie & Huang, Xiaobin & Liu, Hong & Du, Jianke, 2020. "Fuel reactivity controlled self-starting and propulsion performance of a scramjet: A model investigation," Energy, Elsevier, vol. 195(C).
    6. Wang, Cong & Yu, Xuanfei & Ha, Chan & Liu, Zekuan & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2023. "Thermodynamic analysis for a novel chemical precooling turbojet engine based on a multi-stage precooling-compression cycle," Energy, Elsevier, vol. 262(PA).
    7. Feng, Yu & Liu, Yuna & Cao, Yong & Gong, Keyu & Liu, Shuyuan & Qin, Jiang, 2020. "Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels," Energy, Elsevier, vol. 193(C).
    8. Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Zhang, Duo & Bao, Wen & Han, Jiecai, 2016. "Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion," Energy, Elsevier, vol. 114(C), pages 1100-1106.
    9. Deng, Li & Chen, Min & Tang, Hailong & Zhang, Jiyuan, 2024. "Performance evaluation of multicombustor engine for Mach3+-Level propulsion system," Energy, Elsevier, vol. 295(C).
    10. Ambe Verma, Kumari & Murari Pandey, Krishna & Ray, Mukul & Kumar Sharma, Kaushal, 2021. "Effect of transverse fuel injection system on combustion efficiency in scramjet combustor," Energy, Elsevier, vol. 218(C).
    11. Xiong, Yuefei & Qin, Jiang & Cheng, Kunlin & Wang, Youyin, 2020. "Influence of water injection on performance of scramjet engine," Energy, Elsevier, vol. 201(C).
    12. Wang, Youyin & Hou, Wenxin & Zhang, Junlong & Tang, Jingfeng & Chang, Juntao & Bao, Wen, 2021. "Research on the operating boundary of the dual mode scramjet with a constant area combustor through thermodynamic cycle analysis," Energy, Elsevier, vol. 216(C).
    13. Ma, Guangwei & Zhao, Guoyan & Sun, Mingbo & Xiong, Dapeng & Li, Fan & Liu, Mingjiang & Wang, Hongbo, 2024. "On compression level of hypersonic airflow in high-mach scramjet," Energy, Elsevier, vol. 295(C).
    14. Lv, Chengkun & Xu, Haiqi & Chang, Juntao & Wang, Youyin & Chen, Ruoyu & Yu, Daren, 2022. "Mode transition analysis of a turbine-based combined-cycle considering ammonia injection pre-compressor cooling and variable-geometry ram-combustor," Energy, Elsevier, vol. 261(PB).
    15. Li, Chaolong & Xia, Zhixun & Ma, Likun & Chen, Binbin & Feng, Yunchao & Zhang, Jiarui & Duan, Yifan, 2023. "Performance analysis on the specific impulse and specific thrust of scramjet with a quasi-one-dimensional model," Energy, Elsevier, vol. 267(C).
    16. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
    17. Jiang, Yuguang & Xu, Yaxing & Zhang, Silong & Chetehouna, Khaled & Gascoin, Nicolas & Qin, Jiang & Bao, Wen, 2017. "Parametric study on the distribution of flow rate and heat sink utilization in cooling channels of advanced aero-engines," Energy, Elsevier, vol. 138(C), pages 1056-1068.
    18. Kim, Sunjin & Kim, Min Soo & Kim, Minsung, 2020. "Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid," Energy, Elsevier, vol. 198(C).
    19. Wang, Busheng & Xuan, Yimin, 2023. "An integrated model for energy management of aero engines based on thermodynamic principle of variable mass systems," Energy, Elsevier, vol. 276(C).
    20. Li, Hui & Zou, Zhengping & Chen, Yiming & Du, Pengcheng & Fu, Chao & Wang, Yifan, 2023. "Experimental insights into thermal performance of a microtube precooler with drastic coolant properties variation and precooling impacts on turbojet engine operation," Energy, Elsevier, vol. 278(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:170:y:2019:i:c:p:546-556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.