IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v67y2014icp149-161.html
   My bibliography  Save this article

Numerical analysis of flowing cracked hydrocarbon fuel inside cooling channels in view of thermal management

Author

Listed:
  • Bao, Wen
  • Zhang, Silong
  • Qin, Jiang
  • Zhou, Weixing
  • Xie, Kaili

Abstract

Thermal management of fuel is very important for the cooling system of an advanced engine. In order to study the 3-D phenomena of fuel flow with cracking reaction in the cooling channels and their effect on the utilization of fuel heat sink, numerical models of cracking fuel flow in an asymmetrically heated rectangular tube are built on the basis of the real fuel thermophysical properties using commercial software and validated through experiments in a conversion range from 0% to 76%. The simulation results indicate that the velocity, temperature and conversion of fuel flow exhibit a clear nonuniformity in the cross-section of the rectangular tube, causing the nonuniformities of physical and chemical heat sinks. Compared to the situation without chemical reaction, due to the fact that chemical reaction can slightly reduce the nonuniformity of temperature field, the nonuniformity of physical heat sink resulting from the temperature field can be slightly reduced. However, the nonuniformity of total heat sink can be dramatically reduced by chemical reaction because the chemical heat sink is one of the major components of total heat sink, and unlike physical heat sink, chemical heat sink shows much less nonuniformity under the influence of both temperature and velocity.

Suggested Citation

  • Bao, Wen & Zhang, Silong & Qin, Jiang & Zhou, Weixing & Xie, Kaili, 2014. "Numerical analysis of flowing cracked hydrocarbon fuel inside cooling channels in view of thermal management," Energy, Elsevier, vol. 67(C), pages 149-161.
  • Handle: RePEc:eee:energy:v:67:y:2014:i:c:p:149-161
    DOI: 10.1016/j.energy.2014.01.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214000528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.01.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zare, V. & Mahmoudi, S.M.S. & Yari, M., 2013. "An exergoeconomic investigation of waste heat recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) employing an ammonia–water power/cooling cycle," Energy, Elsevier, vol. 61(C), pages 397-409.
    2. Qin, Jiang & Zhang, Silong & Bao, Wen & Zhou, Weixing & Yu, Daren, 2013. "Thermal management method of fuel in advanced aeroengines," Energy, Elsevier, vol. 49(C), pages 459-468.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Youyin & Hou, Wenxin & Zhang, Junlong & Tang, Jingfeng & Chang, Juntao & Bao, Wen, 2021. "Research on the operating boundary of the dual mode scramjet with a constant area combustor through thermodynamic cycle analysis," Energy, Elsevier, vol. 216(C).
    2. Zhiliang Lei & Zewei Bao, 2023. "Supercritical Heat Transfer and Pyrolysis Characteristics of n-Decane in Circular and Rectangular Channels," Energies, MDPI, vol. 16(9), pages 1-15, April.
    3. Li, Xin & Zhang, Silong & Ye, Mai & Qin, Jiang & Bao, Wen & Cui, Naigang & Liu, Xiaoyong & Zhou, Chaoying, 2020. "Effect of enhanced heat transfer structures on the chemical recuperation process of advanced aero-engine," Energy, Elsevier, vol. 211(C).
    4. Li, Chaolong & Xia, Zhixun & Ma, Likun & Chen, Binbin & Feng, Yunchao & Zhang, Jiarui & Duan, Yifan, 2023. "Performance analysis on the specific impulse and specific thrust of scramjet with a quasi-one-dimensional model," Energy, Elsevier, vol. 267(C).
    5. Deng, Daxiang & Xie, Yanlin & Chen, Liang & Pi, Guang & Huang, Yue, 2019. "Experimental investigation on thermal and combustion performance of a combustor with microchannel cooling," Energy, Elsevier, vol. 181(C), pages 954-963.
    6. Zhang, Silong & Qin, Jiang & Bao, Wen & Feng, Yu & Xie, Kaili, 2014. "Thermal management of fuel in advanced aeroengine in view of chemical recuperation," Energy, Elsevier, vol. 77(C), pages 201-211.
    7. Sung-rok Hwang & Hyung Ju Lee, 2023. "Comparison and Evaluation of Transport Property Prediction Performance of Supercritical Hydrocarbon Aviation Fuels and Their Pyrolyzed Products via Endothermic Reactions," Energies, MDPI, vol. 16(13), pages 1-15, July.
    8. Zhang, Silong & Cui, Naigang & Xiong, Yuefei & Feng, Yu & Qin, Jiang & Bao, Wen, 2017. "Effect of channel aspect ratio on chemical recuperation process in advanced aeroengines," Energy, Elsevier, vol. 123(C), pages 9-19.
    9. Feng, Yu & Liu, Yuna & Cao, Yong & Gong, Keyu & Liu, Shuyuan & Qin, Jiang, 2020. "Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels," Energy, Elsevier, vol. 193(C).
    10. Wang, Ke & Fan, Wei & Lu, Wei & Chen, Fan & Zhang, Qibin & Yan, Chuanjun, 2014. "Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process," Energy, Elsevier, vol. 71(C), pages 605-614.
    11. Yiwei Dong & Ertai Wang & Yancheng You & Chunping Yin & Zongpu Wu, 2019. "Thermal Protection System and Thermal Management for Combined-Cycle Engine: Review and Prospects," Energies, MDPI, vol. 12(2), pages 1-51, January.
    12. Zhang, Duo & Qin, Jiang & Feng, Yu & Ren, Fengzhi & Bao, Wen, 2014. "Performance evaluation of power generation system with fuel vapor turbine onboard hydrocarbon fueled scramjets," Energy, Elsevier, vol. 77(C), pages 732-741.
    13. Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Zhang, Duo & Bao, Wen & Han, Jiecai, 2016. "Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion," Energy, Elsevier, vol. 114(C), pages 1100-1106.
    14. Yang, Qingchun & Chang, Juntao & Bao, Wen, 2014. "Thermodynamic analysis on specific thrust of the hydrocarbon fueled scramjet," Energy, Elsevier, vol. 76(C), pages 552-558.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Silong & Cui, Naigang & Xiong, Yuefei & Feng, Yu & Qin, Jiang & Bao, Wen, 2017. "Effect of channel aspect ratio on chemical recuperation process in advanced aeroengines," Energy, Elsevier, vol. 123(C), pages 9-19.
    2. Zhang, Silong & Qin, Jiang & Bao, Wen & Feng, Yu & Xie, Kaili, 2014. "Thermal management of fuel in advanced aeroengine in view of chemical recuperation," Energy, Elsevier, vol. 77(C), pages 201-211.
    3. Rovira, Antonio & Abbas, Rubén & Sánchez, Consuelo & Muñoz, Marta, 2020. "Proposal and analysis of an integrated solar combined cycle with partial recuperation," Energy, Elsevier, vol. 198(C).
    4. Mahdavi, Navid & Khalilarya, Shahram, 2019. "Comprehensive thermodynamic investigation of three cogeneration systems including GT-HRSG/RORC as the base system, intermediate system and solar hybridized system," Energy, Elsevier, vol. 181(C), pages 1252-1272.
    5. Wang, Xurong & Yang, Yi & Zheng, Ya & Dai, Yiping, 2017. "Exergy and exergoeconomic analyses of a supercritical CO2 cycle for a cogeneration application," Energy, Elsevier, vol. 119(C), pages 971-982.
    6. Fallah, M. & Siyahi, H. & Ghiasi, R. Akbarpour & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2016. "Comparison of different gas turbine cycles and advanced exergy analysis of the most effective," Energy, Elsevier, vol. 116(P1), pages 701-715.
    7. Li, Jiaojiao & Zoghi, Mohammad & Zhao, Linfeng, 2022. "Thermo-economic assessment and optimization of a geothermal-driven tri-generation system for power, cooling, and hydrogen production," Energy, Elsevier, vol. 244(PB).
    8. Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Zhang, Duo & Bao, Wen & Han, Jiecai, 2016. "Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion," Energy, Elsevier, vol. 114(C), pages 1100-1106.
    9. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    10. Ayou, Dereje S. & Bruno, Joan Carles & Coronas, Alberto, 2017. "Integration of a mechanical and thermal compressor booster in combined absorption power and refrigeration cycles," Energy, Elsevier, vol. 135(C), pages 327-341.
    11. Bahlouli, Keyvan & Khoshbakhti Saray, Rahim, 2016. "Energetic and exergetic analyses of a new energy system for heating and power production purposes," Energy, Elsevier, vol. 106(C), pages 390-399.
    12. Bahlouli, K. & Khoshbakhti Saray, R. & Sarabchi, N., 2015. "Parametric investigation and thermo-economic multi-objective optimization of an ammonia–water power/cooling cycle coupled with an HCCI (homogeneous charge compression ignition) engine," Energy, Elsevier, vol. 86(C), pages 672-684.
    13. Zhang, Yuan & Liang, Tianyang & Yang, Ke, 2022. "An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization," Energy, Elsevier, vol. 247(C).
    14. Özahi, Emrah & Tozlu, Alperen, 2020. "Optimization of an adapted Kalina cycle to an actual municipal solid waste power plant by using NSGA-II method," Renewable Energy, Elsevier, vol. 149(C), pages 1146-1156.
    15. Gürtürk, Mert & Oztop, Hakan F. & Hepbasli, Arif, 2015. "Comparison of exergoeconomic analysis of two different perlite expansion furnaces," Energy, Elsevier, vol. 80(C), pages 589-598.
    16. Wang, Ke & Fan, Wei & Lu, Wei & Chen, Fan & Zhang, Qibin & Yan, Chuanjun, 2014. "Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process," Energy, Elsevier, vol. 71(C), pages 605-614.
    17. Esra Özdemir Küçük & Muhsin Kılıç, 2023. "Exergoeconomic and Exergetic Sustainability Analysis of a Combined Dual-Pressure Organic Rankine Cycle and Vapor Compression Refrigeration Cycle," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    18. Kim, Sunjin & Cho, Yeonjoo & Kim, Min Soo & Kim, Minsung, 2018. "Characteristics and optimization of supercritical CO2 recompression power cycle and the influence of pinch point temperature difference of recuperators," Energy, Elsevier, vol. 147(C), pages 1216-1226.
    19. Wang, Xurong & Dai, Yiping, 2016. "Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study," Applied Energy, Elsevier, vol. 170(C), pages 193-207.
    20. Liu, Shuyuan & Han, Luyang & Cheng, Qunli & Wang, Peipei & Zhang, Yu & Li, Fengjiao & Liu, Linlin, 2023. "Thermal performance evaluation of a distributed regenerative cooling system using supercritical catalytic steam reforming of aviation kerosene for scramjet engine," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:67:y:2014:i:c:p:149-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.