Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.116140
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jasim, Abbas & Yesner, Greg & Wang, Hao & Safari, Ahmad & Maher, Ali & Basily, B., 2018. "Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications," Applied Energy, Elsevier, vol. 224(C), pages 438-447.
- Turkmen, Anil Can & Celik, Cenk, 2018. "Energy harvesting with the piezoelectric material integrated shoe," Energy, Elsevier, vol. 150(C), pages 556-564.
- Wang, Wei & Cao, Junyi & Bowen, Chris R. & Zhou, Shengxi & Lin, Jing, 2017. "Optimum resistance analysis and experimental verification of nonlinear piezoelectric energy harvesting from human motions," Energy, Elsevier, vol. 118(C), pages 221-230.
- Viet, N.V. & Wang, Q., 2018. "Ocean wave energy pitching harvester with a frequency tuning capability," Energy, Elsevier, vol. 162(C), pages 603-617.
- Xie, X.D. & Wang, Q., 2015. "Energy harvesting from a vehicle suspension system," Energy, Elsevier, vol. 86(C), pages 385-392.
- Mule, Anki Reddy & Dudem, Bhaskar & Yu, Jae Su, 2018. "High-performance and cost-effective triboelectric nanogenerators by sandpaper-assisted micropatterned polytetrafluoroethylene," Energy, Elsevier, vol. 165(PA), pages 677-684.
- Gui, Peng & Deng, Fang & Liang, Zelang & Cai, Yeyun & Chen, Jie, 2018. "Micro linear generator for harvesting mechanical energy from the human gait," Energy, Elsevier, vol. 154(C), pages 365-373.
- Xiong, Haocheng & Wang, Linbing, 2016. "Piezoelectric energy harvester for public roadway: On-site installation and evaluation," Applied Energy, Elsevier, vol. 174(C), pages 101-107.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Mingyi & Qian, Feng & Mi, Jia & Zuo, Lei, 2022. "Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions," Applied Energy, Elsevier, vol. 321(C).
- Manuel Serrano & Kevin Larkin & Sergei Tretiak & Abdessattar Abdelkefi, 2023. "Piezoelectric Energy Harvesting Gyroscopes: Comparative Modeling and Effectiveness," Energies, MDPI, vol. 16(4), pages 1-21, February.
- Mi, Jia & Li, Qiaofeng & Liu, Mingyi & Li, Xiaofan & Zuo, Lei, 2020. "Design, modelling, and testing of a vibration energy harvester using a novel half-wave mechanical rectification," Applied Energy, Elsevier, vol. 279(C).
- Chen, Cheng & Xu, Tian-Bing & Yazdani, Atousa & Sun, Jian-Qiao, 2021. "A high density piezoelectric energy harvesting device from highway traffic — System design and road test," Applied Energy, Elsevier, vol. 299(C).
- Li, Zhongjie & Peng, Yan & Xu, Zhibing & Peng, Jinlin & Xin, Liming & Wang, Min & Luo, Jun & Xie, Shaorong & Pu, Huayan, 2021. "Harnessing energy from suspension systems of oceanic vehicles with high-performance piezoelectric generators," Energy, Elsevier, vol. 228(C).
- Bogdan Dziadak & Łukasz Makowski & Mariusz Kucharek & Adam Jóśko, 2023. "Energy Harvesting for Wearable Sensors and Body Area Network Nodes," Energies, MDPI, vol. 16(4), pages 1-30, February.
- Li, Rongchun & Fan, Kangqi & Ma, Xiaoyu & Wen, Tao & Liu, Qingli & Gao, Xianming & Zhu, Jiuling & Zhang, Yan, 2023. "A rotational energy harvester with a semi-flexible one-way clutch for capturing low-frequency vibration energy," Energy, Elsevier, vol. 281(C).
- Maroofiazar, Rasool & Fahimi Farzam, Maziar, 2021. "Experimental investigation of energy harvesting from sloshing phenomenon: Comparison of Newtonian and non-Newtonian fluids," Energy, Elsevier, vol. 225(C).
- Zhou, Ning & Hou, Zehao & Zhang, Ying & Cao, Junyi & Bowen, Chris R., 2021. "Enhanced swing electromagnetic energy harvesting from human motion," Energy, Elsevier, vol. 228(C).
- Xie, Xiangdong & Wang, Zijing & Zhang, Jiankun & Zhao, Yan & Du, Guofeng & Luo, Mingzhang & Lei, Ming, 2022. "A study on a novel piezoelectric bricks made of double-storey piezoelectric coupled beams," Energy, Elsevier, vol. 250(C).
- Peng, Yan & Xu, Zhibing & Wang, Min & Li, Zhongjie & Peng, Jinlin & Luo, Jun & Xie, Shaorong & Pu, Huayan & Yang, Zhengbao, 2021. "Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators," Renewable Energy, Elsevier, vol. 172(C), pages 551-563.
- Fang, Shitong & Miao, Gang & Chen, Keyu & Xing, Juntong & Zhou, Shengxi & Yang, Zhichun & Liao, Wei-Hsin, 2022. "Broadband energy harvester for low-frequency rotations utilizing centrifugal softening piezoelectric beam array," Energy, Elsevier, vol. 241(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jeong, Se Yeong & Hwang, Won Seop & Cho, Jae Yong & Jeong, Jae Chul & Ahn, Jung Hwan & Kim, Kyung Bum & Hong, Seong Do & Song, Gyeong Ju & Jeon, Deok Hwan & Sung, Tae Hyun, 2019. "Piezoelectric device operating as sensor and harvester to drive switching circuit in LED shoes," Energy, Elsevier, vol. 177(C), pages 87-93.
- Ghodsi, Mojtaba & Ziaiefar, Hamidreza & Mohammadzaheri, Morteza & Al-Yahmedi, Amur, 2019. "Modeling and characterization of permendur cantilever beam for energy harvesting," Energy, Elsevier, vol. 176(C), pages 561-569.
- Xie, Xiangdong & Wang, Zijing & Liu, Dezheng & Du, Guofeng & Zhang, Jinfeng, 2020. "An experimental study on a novel cylinder harvester made of L-shaped piezoelectric coupled beams with a high efficiency," Energy, Elsevier, vol. 212(C).
- Xie, Xiangdong & Wang, Zijing & Zhang, Jiankun & Zhao, Yan & Du, Guofeng & Luo, Mingzhang & Lei, Ming, 2022. "A study on a novel piezoelectric bricks made of double-storey piezoelectric coupled beams," Energy, Elsevier, vol. 250(C).
- Yuan, Huazhi & Wang, Shuai & Wang, Chaohui & Song, Zhi & Li, Yanwei, 2022. "Design of piezoelectric device compatible with pavement considering traffic: Simulation, laboratory and on-site," Applied Energy, Elsevier, vol. 306(PB).
- Li, Zhongjie & Peng, Yan & Xu, Zhibing & Peng, Jinlin & Xin, Liming & Wang, Min & Luo, Jun & Xie, Shaorong & Pu, Huayan, 2021. "Harnessing energy from suspension systems of oceanic vehicles with high-performance piezoelectric generators," Energy, Elsevier, vol. 228(C).
- Turkmen, Anil Can & Celik, Cenk, 2018. "Energy harvesting with the piezoelectric material integrated shoe," Energy, Elsevier, vol. 150(C), pages 556-564.
- Jasim, Abbas & Wang, Hao & Yesner, Greg & Safari, Ahmad & Maher, Ali, 2017. "Optimized design of layered bridge transducer for piezoelectric energy harvesting from roadway," Energy, Elsevier, vol. 141(C), pages 1133-1145.
- Chen, Cheng & Xu, Tian-Bing & Yazdani, Atousa & Sun, Jian-Qiao, 2021. "A high density piezoelectric energy harvesting device from highway traffic — System design and road test," Applied Energy, Elsevier, vol. 299(C).
- Wang, Jun & Liu, Zhiming & Ding, Guangya & Fu, Hongtao & Cai, Guojun, 2021. "Watt-level road-compatible piezoelectric energy harvester for LED-induced lamp system," Energy, Elsevier, vol. 229(C).
- Zhang, Jinhui & Qin, Lifeng, 2019. "A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism," Applied Energy, Elsevier, vol. 240(C), pages 26-34.
- Pei, Jianzhong & Zhou, Bochao & Lyu, Lei, 2019. "e-Road: The largest energy supply of the future?," Applied Energy, Elsevier, vol. 241(C), pages 174-183.
- Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
- Yangyang Zhang & Qi Lai & Ji Wang & Chaofeng Lü, 2022. "Piezoelectric Energy Harvesting from Roadways under Open-Traffic Conditions: Analysis and Optimization with Scaling Law Method," Energies, MDPI, vol. 15(9), pages 1-12, May.
- Wafa Elmannai & Khaled Elleithy & Andrew Anthony Benz & Alberto Carmine DeAngelis & Nick Weaver, 2023. "An Enhanced Piezoelectric-Generated Power Technique for Qi Wireless Charging," Clean Technol., MDPI, vol. 5(1), pages 1-22, January.
- Wang, Chaohui & Wang, Shuai & Gao, Zhiwei & Song, Zhi, 2021. "Effect evaluation of road piezoelectric micro-energy collection-storage system based on laboratory and on-site tests," Applied Energy, Elsevier, vol. 287(C).
- Cai, Qinlin & Zhu, Songye, 2022. "The nexus between vibration-based energy harvesting and structural vibration control: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Zhou, Ran & Yan, Mingyin & Sun, Feng & Jin, Junjie & Li, Qiang & Xu, Fangchao & Zhang, Ming & Zhang, Xiaoyou & Nakano, Kimihiko, 2022. "Experimental validations of a magnetic energy-harvesting suspension and its potential application for self-powered sensing," Energy, Elsevier, vol. 239(PC).
- Chen, Cheng & Sharafi, Amir & Sun, Jian-Qiao, 2020. "A high density piezoelectric energy harvesting device from highway traffic – Design analysis and laboratory validation," Applied Energy, Elsevier, vol. 269(C).
- Guo, Lukai & Wang, Hao, 2022. "Non-intrusive movable energy harvesting devices: Materials, designs, and their prospective uses on transportation infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
More about this item
Keywords
Energy harvesting; Human walking; Force amplification; Piezoelectric stack;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318353. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.