Micro linear generator for harvesting mechanical energy from the human gait
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2018.04.123
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lu, Zhisong & Zhang, Huihui & Mao, Cuiping & Li, Chang Ming, 2016. "Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body," Applied Energy, Elsevier, vol. 164(C), pages 57-63.
- Sue, Chung-Yang & Tsai, Nan-Chyuan, 2012. "Human powered MEMS-based energy harvest devices," Applied Energy, Elsevier, vol. 93(C), pages 390-403.
- Lu, Chen & Zhang, Lipin & Ma, Jian & Chen, Zihan & Tao, Laifa & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou, 2017. "Li-ion battery capacity cycling fading dynamics cognition: A stochastic approach," Energy, Elsevier, vol. 137(C), pages 251-259.
- Wong, Voon-Kean & Ho, Jee-Hou & Chai, Ai-Bao, 2017. "Performance of a piezoelectric energy harvester in actual rain," Energy, Elsevier, vol. 124(C), pages 364-371.
- Viet, N.V. & Xie, X.D. & Liew, K.M. & Banthia, N. & Wang, Q., 2016. "Energy harvesting from ocean waves by a floating energy harvester," Energy, Elsevier, vol. 112(C), pages 1219-1226.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Deng, Fang & Cai, Yeyun & Fan, Xinyu & Gui, Peng & Chen, Jie, 2019. "Pressure-type generator for harvesting mechanical energy from human gait," Energy, Elsevier, vol. 171(C), pages 785-794.
- Qian, Feng & Xu, Tian-Bing & Zuo, Lei, 2019. "Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism," Energy, Elsevier, vol. 189(C).
- Jeong, Se Yeong & Hwang, Won Seop & Cho, Jae Yong & Jeong, Jae Chul & Ahn, Jung Hwan & Kim, Kyung Bum & Hong, Seong Do & Song, Gyeong Ju & Jeon, Deok Hwan & Sung, Tae Hyun, 2019. "Piezoelectric device operating as sensor and harvester to drive switching circuit in LED shoes," Energy, Elsevier, vol. 177(C), pages 87-93.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Deng, Fang & Cai, Yeyun & Fan, Xinyu & Gui, Peng & Chen, Jie, 2019. "Pressure-type generator for harvesting mechanical energy from human gait," Energy, Elsevier, vol. 171(C), pages 785-794.
- Zhao, Tingting & Jiang, Weitao & Niu, Dong & Liu, Hongzhong & Chen, Bangdao & Shi, Yongsheng & Yin, Lei & Lu, Bingheng, 2017. "Flexible pyroelectric device for scavenging thermal energy from chemical process and as self-powered temperature monitor," Applied Energy, Elsevier, vol. 195(C), pages 754-760.
- Wu, Xuan & Li, Guangyong & Lee, Dong-Weon, 2016. "A novel energy conversion method based on hydrogel material for self-powered sensor system applications," Applied Energy, Elsevier, vol. 173(C), pages 103-110.
- Qi, Lu, 2019. "Energy harvesting properties of the functionally graded flexoelectric microbeam energy harvesters," Energy, Elsevier, vol. 171(C), pages 721-730.
- Fan, Kangqi & Cai, Meiling & Liu, Haiyan & Zhang, Yiwei, 2019. "Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester," Energy, Elsevier, vol. 169(C), pages 356-368.
- Xu, Zhiheng & Liu, Yucheng & Williams, Isaiah & Li, Yan & Qian, Fengyu & Wang, Lei & Lei, Yu & Li, Baikun, 2017. "Flat enzyme-based lactate biofuel cell integrated with power management system: Towards long term in situ power supply for wearable sensors," Applied Energy, Elsevier, vol. 194(C), pages 71-80.
- Jiaxin Yu & Jun Wang, 2020. "Optimization Design of a Rain-Power Utilization System Based on a Siphon and Its Application in a High-Rise Building," Energies, MDPI, vol. 13(18), pages 1-18, September.
- Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.
- Alluri, Nagamalleswara Rao & Selvarajan, Sophia & Chandrasekhar, Arunkumar & Saravanakumar, Balasubramaniam & Lee, Gae Myoung & Jeong, Ji Hyun & Kim, Sang-Jae, 2017. "Worm structure piezoelectric energy harvester using ionotropic gelation of barium titanate-calcium alginate composite," Energy, Elsevier, vol. 118(C), pages 1146-1155.
- Ghomian, Taher & Kizilkaya, Orhan & Choi, Jin-Woo, 2018. "Lead sulfide colloidal quantum dot photovoltaic cell for energy harvesting from human body thermal radiation," Applied Energy, Elsevier, vol. 230(C), pages 761-768.
- Cai, Wenzheng & Roussinova, Vesselina & Stoilov, Vesselin, 2022. "Piezoelectric wave energy harvester," Renewable Energy, Elsevier, vol. 196(C), pages 973-982.
- Tan, Ting & Yan, Zhimiao & Zou, Hongxiang & Ma, Kejing & Liu, Fengrui & Zhao, Linchuan & Peng, Zhike & Zhang, Wenming, 2019. "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Elsevier, vol. 254(C).
- Jang, Eunhwa & Banerjee, Priyanshu & Huang, Jiyuan & Madan, Deepa, 2021. "High performance scalable and cost-effective thermoelectric devices fabricated using energy efficient methods and naturally occuring materials," Applied Energy, Elsevier, vol. 294(C).
- Bao, Bin & Chen, Wen & Wang, Quan, 2019. "A piezoelectric hydro-energy harvester featuring a special container structure," Energy, Elsevier, vol. 189(C).
- Mai, Van-Phung & Lee, Tsung-Yu & Yang, Ruey-Jen, 2022. "Enhanced-performance droplet-triboelectric nanogenerators with composite polymer films and electrowetting-assisted charge injection," Energy, Elsevier, vol. 260(C).
- Hyland, Melissa & Hunter, Haywood & Liu, Jie & Veety, Elena & Vashaee, Daryoosh, 2016. "Wearable thermoelectric generators for human body heat harvesting," Applied Energy, Elsevier, vol. 182(C), pages 518-524.
- Chetty, Raju & Nagase, Kazuo & Aihara, Makoto & Jood, Priyanka & Takazawa, Hiroyuki & Ohta, Michihiro & Yamamoto, Atsushi, 2020. "Mechanically durable thermoelectric power generation module made of Ni-based alloy as a reference for reliable testing," Applied Energy, Elsevier, vol. 260(C).
- Pan, Yu & Lin, Teng & Qian, Feng & Liu, Cheng & Yu, Jie & Zuo, Jianyong & Zuo, Lei, 2019. "Modeling and field-test of a compact electromagnetic energy harvester for railroad transportation," Applied Energy, Elsevier, vol. 247(C), pages 309-321.
- Yuan, Jinfeng & Zhu, Rong, 2020. "A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator," Applied Energy, Elsevier, vol. 271(C).
- Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
More about this item
Keywords
Human gait analysis; Acceleration data; Mechanical energy; Harvester; Magnetic induction vector; Output power density;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:154:y:2018:i:c:p:365-373. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.