Effect evaluation of road piezoelectric micro-energy collection-storage system based on laboratory and on-site tests
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.116581
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Zeyu & Hanrahan, Brendan & Shi, Chuan & Khaligh, Alireza, 2018. "Management and storage of energy converted via a pyroelectric heat engine," Applied Energy, Elsevier, vol. 230(C), pages 1326-1331.
- Wang, Shuai & Wang, Chaohui & Gao, Zhiwei & Cao, Hongyun, 2020. "Design and performance of a cantilever piezoelectric power generation device for real-time road safety warnings," Applied Energy, Elsevier, vol. 276(C).
- Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
- Jasim, Abbas & Yesner, Greg & Wang, Hao & Safari, Ahmad & Maher, Ali & Basily, B., 2018. "Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications," Applied Energy, Elsevier, vol. 224(C), pages 438-447.
- Wang, Chaohui & Wang, Shuai & Gao, Zhiwei & Wang, Xingju, 2019. "Applicability evaluation of embedded piezoelectric energy harvester applied in pavement structures," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Guo, Lukai & Lu, Qing, 2019. "Numerical analysis of a new piezoelectric-based energy harvesting pavement system: Lessons from laboratory-based and field-based simulations," Applied Energy, Elsevier, vol. 235(C), pages 963-977.
- Justin Gundlach, 2020. "Climate risks are becoming legal liabilities for the energy sector," Nature Energy, Nature, vol. 5(2), pages 94-97, February.
- Cho, Jae Yong & Kim, Kyung-Bum & Hwang, Won Seop & Yang, Chan Ho & Ahn, Jung Hwan & Hong, Seong Do & Jeon, Deok Hwan & Song, Gyeong Ju & Ryu, Chul Hee & Woo, Sang Bum & Kim, Jihoon & Lee, Tae Hee & Ch, 2019. "A multifunctional road-compatible piezoelectric energy harvester for autonomous driver-assist LED indicators with a self-monitoring system," Applied Energy, Elsevier, vol. 242(C), pages 294-301.
- Wang, Chaohui & Zhao, Jianxiong & Li, Qiang & Li, Yanwei, 2018. "Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement," Applied Energy, Elsevier, vol. 229(C), pages 18-30.
- Song, Gyeong Ju & Kim, Kyung-Bum & Cho, Jae Yong & Woo, Min Sik & Ahn, Jung Hwan & Eom, Jong Hyuk & Ko, Sung Min & Yang, Chan Ho & Hong, Seong Do & Jeong, Se Yeong & Hwang, Won Seop & Woo, Sang Bum & , 2019. "Performance of a speed bump piezoelectric energy harvester for an automatic cellphone charging system," Applied Energy, Elsevier, vol. 247(C), pages 221-227.
- Hwang, Wonseop & Kim, Kyung-Bum & Cho, Jae Yong & Yang, Chan Ho & Kim, Jung Hun & Song, Gyeong Ju & Song, Yewon & Jeon, Deok Hwan & Ahn, Jung Hwan & Do Hong, Seong & Kim, Jihoon & Lee, Tae Hee & Choi,, 2019. "Watts-level road-compatible piezoelectric energy harvester for a self-powered temperature monitoring system on an actual roadway," Applied Energy, Elsevier, vol. 243(C), pages 313-320.
- Xiong, Haocheng & Wang, Linbing, 2016. "Piezoelectric energy harvester for public roadway: On-site installation and evaluation," Applied Energy, Elsevier, vol. 174(C), pages 101-107.
- Gholikhani, Mohammadreza & Nasouri, Reza & Tahami, Seyed Amid & Legette, Sarah & Dessouky, Samer & Montoya, Arturo, 2019. "Harvesting kinetic energy from roadway pavement through an electromagnetic speed bump," Applied Energy, Elsevier, vol. 250(C), pages 503-511.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ruifeng Shi & Yuqin Gao & Jin Ning & Keyi Tang & Limin Jia, 2023. "Research on Highway Self-Consistent Energy System Planning with Uncertain Wind and Photovoltaic Power Output," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
- Guanyu Ji & Xuancang Wang & Yuchen Guo & Yi Zhang & Qinglian Yin & Yaolu Luo, 2021. "Study on the Physical, Chemical and Nano-Microstructure Characteristics of Asphalt Mixed with Recycled Eggshell Waste," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
- Wang, Chaohui & Cao, Hongyun & Wang, Shuai & Gao, Zhiwei, 2021. "Design and testing of road piezoelectric power generation device based on traffic environment applicability," Applied Energy, Elsevier, vol. 299(C).
- Enmao Quan & Hongke Xu & Zhongyang Sun, 2022. "Composition Optimization and Damping Performance Evaluation of Porous Asphalt Mixture Containing Recycled Crumb Rubber," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
- Penghui Wen & Chaohui Wang & Liang Song & Liangliang Niu & Haoyu Chen, 2021. "Durability and Sustainability of Cement-Stabilized Materials Based on Utilization of Waste Materials: A Literature Review," Sustainability, MDPI, vol. 13(21), pages 1-27, October.
- Guo, Lukai & Wang, Hao, 2023. "Multi-physics modeling of piezoelectric energy harvesters from vibrations for improved cantilever designs," Energy, Elsevier, vol. 263(PC).
- Marco Antonio Islas-Herrera & David Sánchez-Luna & Jorge Miguel Jaimes-Ponce & Daniel Andrés Córdova-Córdova & Christopher Iván Lorenzo-Alfaro & Daniel Hernández-Rivera, 2024. "Energy Harvester Based on Mechanical Impacts of an Oscillating Rod on Piezoelectric Transducers," Clean Technol., MDPI, vol. 6(3), pages 1-14, July.
- Yuchen Guo & Xuancang Wang & Guanyu Ji & Yi Zhang & Hao Su & Yaolu Luo, 2021. "Effect of Recycled Shell Waste as a Modifier on the High- and Low-Temperature Rheological Properties of Asphalt," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
- Tengteng Guo & Hao Fu & Chaohui Wang & Haijun Chen & Qian Chen & Qing Wang & Yuanzhao Chen & Zhenxia Li & Aijiu Chen, 2021. "Road Performance and Emission Reduction Effect of Graphene/Tourmaline-Composite-Modified Asphalt," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
- Yangyang Zhang & Qi Lai & Ji Wang & Chaofeng Lü, 2022. "Piezoelectric Energy Harvesting from Roadways under Open-Traffic Conditions: Analysis and Optimization with Scaling Law Method," Energies, MDPI, vol. 15(9), pages 1-12, May.
- Wang, Shuai & Wang, Chaohui & Yuan, Huazhi & Ji, Xiaoping & Yu, Gongxin & Jia, Xiaodong, 2023. "Size effect of piezoelectric energy harvester for road with high efficiency electrical properties," Applied Energy, Elsevier, vol. 330(PB).
- Yuan, Huazhi & Liu, Jikang & Wang, Chaohui & Wang, Shuai & Cao, Hongyun, 2024. "Optimization of piezoelectric device with both mechanical and electrical properties for power supply of road sensors," Applied Energy, Elsevier, vol. 364(C).
- Yuan, Huazhi & Wang, Shuai & Wang, Chaohui & Song, Zhi & Li, Yanwei, 2022. "Design of piezoelectric device compatible with pavement considering traffic: Simulation, laboratory and on-site," Applied Energy, Elsevier, vol. 306(PB).
- Chen, Cheng & Xu, Tian-Bing & Yazdani, Atousa & Sun, Jian-Qiao, 2021. "A high density piezoelectric energy harvesting device from highway traffic — System design and road test," Applied Energy, Elsevier, vol. 299(C).
- Wang, Chaohui & Zhou, Ruoling & Wang, Shuai & Yuan, Huazhi & Cao, Hongyun, 2023. "Structure optimization and performance of piezoelectric energy harvester for improving road power generation effect," Energy, Elsevier, vol. 270(C).
- Wang, Shuai & Wang, Chaohui & Yuan, Huazhi & Ji, Xiaoping, 2022. "Design and performance of piezoelectric energy output promotion system for road," Renewable Energy, Elsevier, vol. 197(C), pages 443-451.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Cheng & Sharafi, Amir & Sun, Jian-Qiao, 2020. "A high density piezoelectric energy harvesting device from highway traffic – Design analysis and laboratory validation," Applied Energy, Elsevier, vol. 269(C).
- Yangyang Zhang & Qi Lai & Ji Wang & Chaofeng Lü, 2022. "Piezoelectric Energy Harvesting from Roadways under Open-Traffic Conditions: Analysis and Optimization with Scaling Law Method," Energies, MDPI, vol. 15(9), pages 1-12, May.
- Yuan, Huazhi & Wang, Shuai & Wang, Chaohui & Song, Zhi & Li, Yanwei, 2022. "Design of piezoelectric device compatible with pavement considering traffic: Simulation, laboratory and on-site," Applied Energy, Elsevier, vol. 306(PB).
- Wang, Chaohui & Cao, Hongyun & Wang, Shuai & Gao, Zhiwei, 2021. "Design and testing of road piezoelectric power generation device based on traffic environment applicability," Applied Energy, Elsevier, vol. 299(C).
- Wang, Jun & Liu, Zhiming & Ding, Guangya & Fu, Hongtao & Cai, Guojun, 2021. "Watt-level road-compatible piezoelectric energy harvester for LED-induced lamp system," Energy, Elsevier, vol. 229(C).
- Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2021. "Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review," Applied Energy, Elsevier, vol. 286(C).
- Song, Gyeong Ju & Cho, Jae Yong & Kim, Kyung-Bum & Ahn, Jung Hwan & Song, Yewon & Hwang, Wonseop & Hong, Seong Do & Sung, Tae Hyun, 2019. "Development of a pavement block piezoelectric energy harvester for self-powered walkway applications," Applied Energy, Elsevier, vol. 256(C).
- Zou, Hong-Xiang & Zhu, Quan-Wei & He, Jia-Yi & Zhao, Lin-Chuan & Wei, Ke-Xiang & Zhang, Wen-Ming & Du, Rong-Hua & Liu, Sheng, 2024. "Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management," Applied Energy, Elsevier, vol. 353(PA).
- Hong, Seong Do & Ahn, Jung Hwan & Kim, Kyung-Bum & Kim, Jeong Hun & Cho, Jae Yong & Woo, Min Sik & Song, Yewon & Hwang, Wonseop & Jeon, Deok Hwan & Kim, Jihoon & Jeong, Se Yeong & Woo, Sang Bum & Ryu,, 2022. "Uniform stress distribution road piezoelectric generator with free-fixed-end type central strike mechanism," Energy, Elsevier, vol. 239(PA).
- Wang, Shuai & Wang, Chaohui & Gao, Zhiwei & Cao, Hongyun, 2020. "Design and performance of a cantilever piezoelectric power generation device for real-time road safety warnings," Applied Energy, Elsevier, vol. 276(C).
- Niloufar Zabihi & Mohamed Saafi, 2020. "Recent Developments in the Energy Harvesting Systems from Road Infrastructures," Sustainability, MDPI, vol. 12(17), pages 1-27, August.
- Chen, Cheng & Xu, Tian-Bing & Yazdani, Atousa & Sun, Jian-Qiao, 2021. "A high density piezoelectric energy harvesting device from highway traffic — System design and road test," Applied Energy, Elsevier, vol. 299(C).
- Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
- Xie, Xiangdong & Wang, Zijing & Liu, Dezheng & Du, Guofeng & Zhang, Jinfeng, 2020. "An experimental study on a novel cylinder harvester made of L-shaped piezoelectric coupled beams with a high efficiency," Energy, Elsevier, vol. 212(C).
- Song, Gyeong Ju & Kim, Kyung-Bum & Cho, Jae Yong & Woo, Min Sik & Ahn, Jung Hwan & Eom, Jong Hyuk & Ko, Sung Min & Yang, Chan Ho & Hong, Seong Do & Jeong, Se Yeong & Hwang, Won Seop & Woo, Sang Bum & , 2019. "Performance of a speed bump piezoelectric energy harvester for an automatic cellphone charging system," Applied Energy, Elsevier, vol. 247(C), pages 221-227.
- Hu, Hengwu & Zha, Xudong & Niu, Chao & Wang, Ziwei & Lv, Ruidong, 2024. "Structural optimization and performance testing of concentrated photovoltaic panels for pavement," Applied Energy, Elsevier, vol. 356(C).
- Wang, Chaohui & Zhou, Ruoling & Wang, Shuai & Yuan, Huazhi & Cao, Hongyun, 2023. "Structure optimization and performance of piezoelectric energy harvester for improving road power generation effect," Energy, Elsevier, vol. 270(C).
- Kim, Jeong Hun & Cho, Jae Yong & Jhun, Jeong Pil & Song, Gyeong Ju & Eom, Jong Hyuk & Jeong, Sinwoo & Hwang, Wonseop & Woo, Min Sik & Sung, Tae Hyun, 2021. "Development of a hybrid type smart pen piezoelectric energy harvester for an IoT platform," Energy, Elsevier, vol. 222(C).
- Wang, J. & Xiao, F. & Zhao, H., 2021. "Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Guo, Lukai & Wang, Hao, 2022. "Non-intrusive movable energy harvesting devices: Materials, designs, and their prospective uses on transportation infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
More about this item
Keywords
Energy harvesting; Piezoelectric; Collection-storage system; On-site efficiency; Road engineering;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:287:y:2021:i:c:s0306261921001276. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.