IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v212y2020ics0360544220318594.html
   My bibliography  Save this article

An experimental study on a novel cylinder harvester made of L-shaped piezoelectric coupled beams with a high efficiency

Author

Listed:
  • Xie, Xiangdong
  • Wang, Zijing
  • Liu, Dezheng
  • Du, Guofeng
  • Zhang, Jinfeng

Abstract

In view of the unsatisfactory utilization efficiency of the piezoelectric patches used in the conventional harvesters, this research develops a novel efficient cylinder energy harvester made of L-shaped piezoelectric coupled beams by fully using the positive piezoelectric effect of the piezoelectric patch. Due to lack of accurate theory model of the L-shaped beam, experimental research is employed to study the advantages of the developed harvester which includes a pair of stators, a rotor and a cylindrical shell. Sets of stator specimens, a rotor, and a cylindrical shell are customized and five groups of experiments are conducted. The influences of some factors on the output voltage and power from an L-shaped beam are tested and analyzed. The output power and peak-to-peak voltage at a resonance can easily reach up to 2.35 mW and 50 V for a piezoelectric patch with a dimension of 38 mm × 13 mm × 0.5 mm of an L-shaped beam in the vibration process. This research provides an ingenious and compact structure for energy harvesting from ambient vibration such as wind and its effectiveness and efficiency are validated through a series of experiments.

Suggested Citation

  • Xie, Xiangdong & Wang, Zijing & Liu, Dezheng & Du, Guofeng & Zhang, Jinfeng, 2020. "An experimental study on a novel cylinder harvester made of L-shaped piezoelectric coupled beams with a high efficiency," Energy, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220318594
    DOI: 10.1016/j.energy.2020.118752
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220318594
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Na, Yonghyeon & Lee, Min-Seon & Lee, Jung Woo & Jeong, Young Hun, 2020. "Wind energy harvesting from a magnetically coupled piezoelectric bimorph cantilever array based on a dynamic magneto-piezo-elastic structure," Applied Energy, Elsevier, vol. 264(C).
    2. Jasim, Abbas & Yesner, Greg & Wang, Hao & Safari, Ahmad & Maher, Ali & Basily, B., 2018. "Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications," Applied Energy, Elsevier, vol. 224(C), pages 438-447.
    3. Viet, N.V. & Xie, X.D. & Liew, K.M. & Banthia, N. & Wang, Q., 2016. "Energy harvesting from ocean waves by a floating energy harvester," Energy, Elsevier, vol. 112(C), pages 1219-1226.
    4. Turkmen, Anil Can & Celik, Cenk, 2018. "Energy harvesting with the piezoelectric material integrated shoe," Energy, Elsevier, vol. 150(C), pages 556-564.
    5. Cho, Jae Yong & Kim, Kyung-Bum & Hwang, Won Seop & Yang, Chan Ho & Ahn, Jung Hwan & Hong, Seong Do & Jeon, Deok Hwan & Song, Gyeong Ju & Ryu, Chul Hee & Woo, Sang Bum & Kim, Jihoon & Lee, Tae Hee & Ch, 2019. "A multifunctional road-compatible piezoelectric energy harvester for autonomous driver-assist LED indicators with a self-monitoring system," Applied Energy, Elsevier, vol. 242(C), pages 294-301.
    6. Hu, Xiaobin & Li, Ying & Xie, Xiangdong, 2019. "A study on a U-shaped piezoelectric coupled beam and its corresponding ingenious harvester," Energy, Elsevier, vol. 185(C), pages 938-950.
    7. Xie, X.D. & Wang, Q., 2015. "Energy harvesting from a vehicle suspension system," Energy, Elsevier, vol. 86(C), pages 385-392.
    8. Hwang, Wonseop & Kim, Kyung-Bum & Cho, Jae Yong & Yang, Chan Ho & Kim, Jung Hun & Song, Gyeong Ju & Song, Yewon & Jeon, Deok Hwan & Ahn, Jung Hwan & Do Hong, Seong & Kim, Jihoon & Lee, Tae Hee & Choi,, 2019. "Watts-level road-compatible piezoelectric energy harvester for a self-powered temperature monitoring system on an actual roadway," Applied Energy, Elsevier, vol. 243(C), pages 313-320.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Daoli & Zhou, Jie & Tan, Ting & Yan, Zhimiao & Sun, Weipeng & Yin, Junlian & Zhang, Wenming, 2021. "Hydrokinetic piezoelectric energy harvesting by wake induced vibration," Energy, Elsevier, vol. 220(C).
    2. Du, Xiaozhen & Zhang, Mi & Chang, Heng & Wang, Yu & Yu, Hong, 2022. "Micro windmill piezoelectric energy harvester based on vortex-induced vibration in tunnel," Energy, Elsevier, vol. 238(PA).
    3. Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Tan, Ting & Zhang, Wenming & Liao, Wei-Hsin, 2021. "Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations," Applied Energy, Elsevier, vol. 302(C).
    4. Sun, Hongjun & Yang, Zhen & Li, Jinxia & Ding, Hongbing & Lv, Pengfei, 2024. "Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS," Energy, Elsevier, vol. 298(C).
    5. Zhou, Jiaxi & Zhao, Xuhui & Wang, Kai & Chang, Yaopeng & Xu, Daolin & Wen, Guilin, 2021. "Bio-inspired bistable piezoelectric vibration energy harvester: Design and experimental investigation," Energy, Elsevier, vol. 228(C).
    6. Hou, Chengwei & Du, Xuteng & Dang, Shuai & Shan, Xiaobiao & Elsamanty, Mahmoud & Guo, Kai & Xie, Tao, 2024. "A broadband and multiband magnetism-plucked rotary piezoelectric energy harvester," Energy, Elsevier, vol. 302(C).
    7. Shan, Xiaobiao & Sui, Guangdong & Tian, Haigang & Min, Zhaowei & Feng, Ju & Xie, Tao, 2022. "Numerical analysis and experiments of an underwater magnetic nonlinear energy harvester based on vortex-induced vibration," Energy, Elsevier, vol. 241(C).
    8. Xie, Xiangdong & Wang, Zijing & Zhang, Jiankun & Zhao, Yan & Du, Guofeng & Luo, Mingzhang & Lei, Ming, 2022. "A study on a novel piezoelectric bricks made of double-storey piezoelectric coupled beams," Energy, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Xiangdong & Wang, Zijing & Zhang, Jiankun & Zhao, Yan & Du, Guofeng & Luo, Mingzhang & Lei, Ming, 2022. "A study on a novel piezoelectric bricks made of double-storey piezoelectric coupled beams," Energy, Elsevier, vol. 250(C).
    2. Wang, Chaohui & Cao, Hongyun & Wang, Shuai & Gao, Zhiwei, 2021. "Design and testing of road piezoelectric power generation device based on traffic environment applicability," Applied Energy, Elsevier, vol. 299(C).
    3. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    4. Chen, Cheng & Xu, Tian-Bing & Yazdani, Atousa & Sun, Jian-Qiao, 2021. "A high density piezoelectric energy harvesting device from highway traffic — System design and road test," Applied Energy, Elsevier, vol. 299(C).
    5. Wang, Jun & Liu, Zhiming & Ding, Guangya & Fu, Hongtao & Cai, Guojun, 2021. "Watt-level road-compatible piezoelectric energy harvester for LED-induced lamp system," Energy, Elsevier, vol. 229(C).
    6. Song, Gyeong Ju & Cho, Jae Yong & Kim, Kyung-Bum & Ahn, Jung Hwan & Song, Yewon & Hwang, Wonseop & Hong, Seong Do & Sung, Tae Hyun, 2019. "Development of a pavement block piezoelectric energy harvester for self-powered walkway applications," Applied Energy, Elsevier, vol. 256(C).
    7. Qian, Feng & Xu, Tian-Bing & Zuo, Lei, 2019. "Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism," Energy, Elsevier, vol. 189(C).
    8. Wang, Chaohui & Wang, Shuai & Gao, Zhiwei & Song, Zhi, 2021. "Effect evaluation of road piezoelectric micro-energy collection-storage system based on laboratory and on-site tests," Applied Energy, Elsevier, vol. 287(C).
    9. Chen, Cheng & Sharafi, Amir & Sun, Jian-Qiao, 2020. "A high density piezoelectric energy harvesting device from highway traffic – Design analysis and laboratory validation," Applied Energy, Elsevier, vol. 269(C).
    10. Alluri, Nagamalleswara Rao & Selvarajan, Sophia & Chandrasekhar, Arunkumar & Saravanakumar, Balasubramaniam & Lee, Gae Myoung & Jeong, Ji Hyun & Kim, Sang-Jae, 2017. "Worm structure piezoelectric energy harvester using ionotropic gelation of barium titanate-calcium alginate composite," Energy, Elsevier, vol. 118(C), pages 1146-1155.
    11. Xie, Xiangdong & Zhang, Jiankun & Wang, Zijing & Li, Lingjie & Du, Guofeng, 2024. "The effect of magnetic proof masses on the energy harvesting bandwidth of piezoelectric coupled cantilever array," Applied Energy, Elsevier, vol. 353(PA).
    12. Li, Zhongjie & Peng, Yan & Xu, Zhibing & Peng, Jinlin & Xin, Liming & Wang, Min & Luo, Jun & Xie, Shaorong & Pu, Huayan, 2021. "Harnessing energy from suspension systems of oceanic vehicles with high-performance piezoelectric generators," Energy, Elsevier, vol. 228(C).
    13. Azam, Ali & Ahmed, Ammar & Kamran, Muhammad Sajid & Hai, Li & Zhang, Zutao & Ali, Asif, 2021. "Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Wang, Feng & Sun, Xiuting & Xu, Jian, 2018. "A novel energy harvesting device for ultralow frequency excitation," Energy, Elsevier, vol. 151(C), pages 250-260.
    15. Zou, Hong-Xiang & Zhu, Quan-Wei & He, Jia-Yi & Zhao, Lin-Chuan & Wei, Ke-Xiang & Zhang, Wen-Ming & Du, Rong-Hua & Liu, Sheng, 2024. "Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management," Applied Energy, Elsevier, vol. 353(PA).
    16. Sani, Godwin & Balaram, Bipin & Kudra, Grzegorz & Awrejcewicz, Jan, 2024. "Energy harvesting from friction-induced vibrations in vehicle braking systems in the presence of rotary unbalances," Energy, Elsevier, vol. 289(C).
    17. Ghodsi, Mojtaba & Ziaiefar, Hamidreza & Mohammadzaheri, Morteza & Al-Yahmedi, Amur, 2019. "Modeling and characterization of permendur cantilever beam for energy harvesting," Energy, Elsevier, vol. 176(C), pages 561-569.
    18. Shi, Ge & Tong, Dike & Xia, Yinshui & Jia, Shengyao & Chang, Jian & Li, Qing & Wang, Xiudeng & Xia, Huakang & Ye, Yidie, 2022. "A piezoelectric vibration energy harvester for multi-directional and ultra-low frequency waves with magnetic coupling driven by rotating balls," Applied Energy, Elsevier, vol. 310(C).
    19. Yangyang Zhang & Qi Lai & Ji Wang & Chaofeng Lü, 2022. "Piezoelectric Energy Harvesting from Roadways under Open-Traffic Conditions: Analysis and Optimization with Scaling Law Method," Energies, MDPI, vol. 15(9), pages 1-12, May.
    20. Wang, Chaohui & Zhou, Ruoling & Wang, Shuai & Yuan, Huazhi & Cao, Hongyun, 2023. "Structure optimization and performance of piezoelectric energy harvester for improving road power generation effect," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220318594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.