IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v176y2019icp561-569.html
   My bibliography  Save this article

Modeling and characterization of permendur cantilever beam for energy harvesting

Author

Listed:
  • Ghodsi, Mojtaba
  • Ziaiefar, Hamidreza
  • Mohammadzaheri, Morteza
  • Al-Yahmedi, Amur

Abstract

This article presents the development of a cantilever harvester made of permendur with tip excitation. In the beginning, the dynamic behavior of the tip-mass beam harvester subjected to a harmonic bending force at the free-end has been studied. Also, the magneto-mechanical model, rotating unbalance equations and Faraday's Law have been combined to present the general model for generated power. Furthermore, damping coefficients have been elaborately measured and considered in the modeling of magnetostrictive harvester and prediction of optimum load to generate the maximum power. Good agreement between analytical and experimental results shows that the model is able to predict the behavior of harvester under the vibration with tip excitation and can find the optimum external load to have maximum power. Experiment results show that the maximum output power is 6.81 μW/cm3 and this power happens when the harvester is connected to a 0.63 Ω external load. Compared to other magnetostrictive harvesters, Permendur shows lower power density. However, its harvested power is enough to energize μW electrical devices at a reasonable cost. The presented results in this paper can be utilized as a design guideline for future investigations to optimize vibration-based magnetostrictive energy harvesters with tip excitation.

Suggested Citation

  • Ghodsi, Mojtaba & Ziaiefar, Hamidreza & Mohammadzaheri, Morteza & Al-Yahmedi, Amur, 2019. "Modeling and characterization of permendur cantilever beam for energy harvesting," Energy, Elsevier, vol. 176(C), pages 561-569.
  • Handle: RePEc:eee:energy:v:176:y:2019:i:c:p:561-569
    DOI: 10.1016/j.energy.2019.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219306383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wong, Voon-Kean & Ho, Jee-Hou & Chai, Ai-Bao, 2017. "Performance of a piezoelectric energy harvester in actual rain," Energy, Elsevier, vol. 124(C), pages 364-371.
    2. Turkmen, Anil Can & Celik, Cenk, 2018. "Energy harvesting with the piezoelectric material integrated shoe," Energy, Elsevier, vol. 150(C), pages 556-564.
    3. Wang, Wei & Cao, Junyi & Bowen, Chris R. & Zhou, Shengxi & Lin, Jing, 2017. "Optimum resistance analysis and experimental verification of nonlinear piezoelectric energy harvesting from human motions," Energy, Elsevier, vol. 118(C), pages 221-230.
    4. Ilyas, Mohammad Adnan & Swingler, Jonathan, 2015. "Piezoelectric energy harvesting from raindrop impacts," Energy, Elsevier, vol. 90(P1), pages 796-806.
    5. Fan, Kangqi & Cai, Meiling & Liu, Haiyan & Zhang, Yiwei, 2019. "Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester," Energy, Elsevier, vol. 169(C), pages 356-368.
    6. Zhang, Yulong & Wang, Tianyang & Luo, Anxin & Hu, Yushen & Li, Xinxin & Wang, Fei, 2018. "Micro electrostatic energy harvester with both broad bandwidth and high normalized power density," Applied Energy, Elsevier, vol. 212(C), pages 362-371.
    7. Xie, X.D. & Wang, Q. & Wang, S.J., 2015. "Energy harvesting from high-rise buildings by a piezoelectric harvester device," Energy, Elsevier, vol. 93(P2), pages 1345-1352.
    8. Hu, Yili & Yi, Zhiran & Dong, Xiaoxue & Mou, Fangxiao & Tian, Yingwei & Yang, Qinghai & Yang, Bin & Liu, Jingquan, 2019. "High power density energy harvester with non-uniform cantilever structure due to high average strain distribution," Energy, Elsevier, vol. 169(C), pages 294-304.
    9. Jasim, Abbas & Wang, Hao & Yesner, Greg & Safari, Ahmad & Maher, Ali, 2017. "Optimized design of layered bridge transducer for piezoelectric energy harvesting from roadway," Energy, Elsevier, vol. 141(C), pages 1133-1145.
    10. Viet, N.V. & Wang, Q., 2018. "Ocean wave energy pitching harvester with a frequency tuning capability," Energy, Elsevier, vol. 162(C), pages 603-617.
    11. Xie, X.D. & Wang, Q., 2015. "Energy harvesting from a vehicle suspension system," Energy, Elsevier, vol. 86(C), pages 385-392.
    12. Wei, Chongfeng & Taghavifar, Hamid, 2017. "A novel approach to energy harvesting from vehicle suspension system: Half-vehicle model," Energy, Elsevier, vol. 134(C), pages 279-288.
    13. Mohammadi, Saber & Esfandiari, Aboozar, 2015. "Magnetostrictive vibration energy harvesting using strain energy method," Energy, Elsevier, vol. 81(C), pages 519-525.
    14. Jafari, Hamid & Ghodsi, Ali & Azizi, Saber & Ghazavi, Mohammad Reza, 2017. "Energy harvesting based on magnetostriction, for low frequency excitations," Energy, Elsevier, vol. 124(C), pages 1-8.
    15. Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei & Shang, Shijie, 2018. "Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings," Energy, Elsevier, vol. 153(C), pages 400-412.
    16. Fan, Kangqi & Zhang, Yiwei & Liu, Haiyan & Cai, Meiling & Tan, Qinxue, 2019. "A nonlinear two-degree-of-freedom electromagnetic energy harvester for ultra-low frequency vibrations and human body motions," Renewable Energy, Elsevier, vol. 138(C), pages 292-302.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Xiaobin & Li, Ying & Xie, Xiangdong, 2019. "A study on a U-shaped piezoelectric coupled beam and its corresponding ingenious harvester," Energy, Elsevier, vol. 185(C), pages 938-950.
    2. Arias, Francisco J. & De Las Heras, Salvador, 2019. "The use of compliant surfaces for harvesting energy from water streams," Energy, Elsevier, vol. 189(C).
    3. Gao, Mingyuan & Wang, Yuan & Wang, Yifeng & Yao, Ye & Wang, Ping & Sun, Yuhua & Xiao, Jieling, 2020. "Modeling and experimental verification of a fractional damping quad-stable energy harvesting system for use in wireless sensor networks," Energy, Elsevier, vol. 190(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Lu, 2019. "Energy harvesting properties of the functionally graded flexoelectric microbeam energy harvesters," Energy, Elsevier, vol. 171(C), pages 721-730.
    2. Turkmen, Anil Can & Celik, Cenk, 2018. "Energy harvesting with the piezoelectric material integrated shoe," Energy, Elsevier, vol. 150(C), pages 556-564.
    3. Wang, Feng & Sun, Xiuting & Xu, Jian, 2018. "A novel energy harvesting device for ultralow frequency excitation," Energy, Elsevier, vol. 151(C), pages 250-260.
    4. Jasim, Abbas & Wang, Hao & Yesner, Greg & Safari, Ahmad & Maher, Ali, 2017. "Optimized design of layered bridge transducer for piezoelectric energy harvesting from roadway," Energy, Elsevier, vol. 141(C), pages 1133-1145.
    5. Jeong, Se Yeong & Hwang, Won Seop & Cho, Jae Yong & Jeong, Jae Chul & Ahn, Jung Hwan & Kim, Kyung Bum & Hong, Seong Do & Song, Gyeong Ju & Jeon, Deok Hwan & Sung, Tae Hyun, 2019. "Piezoelectric device operating as sensor and harvester to drive switching circuit in LED shoes," Energy, Elsevier, vol. 177(C), pages 87-93.
    6. Qian, Feng & Xu, Tian-Bing & Zuo, Lei, 2019. "Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism," Energy, Elsevier, vol. 189(C).
    7. Zhou, Ran & Yan, Mingyin & Sun, Feng & Jin, Junjie & Li, Qiang & Xu, Fangchao & Zhang, Ming & Zhang, Xiaoyou & Nakano, Kimihiko, 2022. "Experimental validations of a magnetic energy-harvesting suspension and its potential application for self-powered sensing," Energy, Elsevier, vol. 239(PC).
    8. Fan, Kangqi & Cai, Meiling & Liu, Haiyan & Zhang, Yiwei, 2019. "Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester," Energy, Elsevier, vol. 169(C), pages 356-368.
    9. Zhou, Ning & Hou, Zehao & Zhang, Ying & Cao, Junyi & Bowen, Chris R., 2021. "Enhanced swing electromagnetic energy harvesting from human motion," Energy, Elsevier, vol. 228(C).
    10. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & El-Daly, Abdel-Rahman B.M. & Hassan, Mohamed A. & Elagouz, Ahmed & Bo, Yang, 2019. "Analysis of the prospective vibrational energy harvesting of heavy-duty truck suspensions: A simulation approach," Energy, Elsevier, vol. 173(C), pages 332-351.
    11. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    12. Sani, Godwin & Balaram, Bipin & Kudra, Grzegorz & Awrejcewicz, Jan, 2024. "Energy harvesting from friction-induced vibrations in vehicle braking systems in the presence of rotary unbalances," Energy, Elsevier, vol. 289(C).
    13. Peng, Yan & Xu, Zhibing & Wang, Min & Li, Zhongjie & Peng, Jinlin & Luo, Jun & Xie, Shaorong & Pu, Huayan & Yang, Zhengbao, 2021. "Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators," Renewable Energy, Elsevier, vol. 172(C), pages 551-563.
    14. Shan, Xiaobiao & Sui, Guangdong & Tian, Haigang & Min, Zhaowei & Feng, Ju & Xie, Tao, 2022. "Numerical analysis and experiments of an underwater magnetic nonlinear energy harvester based on vortex-induced vibration," Energy, Elsevier, vol. 241(C).
    15. Fan, Kangqi & Qu, Hengheng & Wu, Yipeng & Wen, Tao & Wang, Fei, 2020. "Design and development of a rotational energy harvester for ultralow frequency vibrations and irregular human motions," Renewable Energy, Elsevier, vol. 156(C), pages 1028-1039.
    16. Cai, Qinlin & Zhu, Songye, 2022. "The nexus between vibration-based energy harvesting and structural vibration control: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Wong, Voon-Kean & Ho, Jee-Hou & Chai, Ai-Bao, 2017. "Performance of a piezoelectric energy harvester in actual rain," Energy, Elsevier, vol. 124(C), pages 364-371.
    18. Maharjan, Pukar & Salauddin, Md & Cho, Hyunok & Park, Jae Yeong, 2018. "An indoor power line based magnetic field energy harvester for self-powered wireless sensors in smart home applications," Applied Energy, Elsevier, vol. 232(C), pages 398-408.
    19. Zhao, Dong & Liu, Ying, 2020. "A prototype for light-electric harvester based on light sensitive liquid crystal elastomer cantilever," Energy, Elsevier, vol. 198(C).
    20. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Lin, S.X. & Wang, L., 2019. "Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:176:y:2019:i:c:p:561-569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.