Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2022.119379
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Turkmen, Anil Can & Celik, Cenk, 2018. "Energy harvesting with the piezoelectric material integrated shoe," Energy, Elsevier, vol. 150(C), pages 556-564.
- Cai, Mingjing & Wang, Jiahua & Liao, Wei-Hsin, 2020. "Self-powered smart watch and wristband enabled by embedded generator," Applied Energy, Elsevier, vol. 263(C).
- Qian, Feng & Xu, Tian-Bing & Zuo, Lei, 2019. "Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism," Energy, Elsevier, vol. 189(C).
- Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
- Halim, M.A. & Rantz, R. & Zhang, Q. & Gu, L. & Yang, K. & Roundy, S., 2018. "An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion," Applied Energy, Elsevier, vol. 217(C), pages 66-74.
- Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
- Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
- Liu, Mingyi & Hughes-Oliver, Cherice & Queen, Robin & Zuo, Lei, 2021. "Comparison of negative-muscle-work energy harvesters from the human ankle: Different designs and trade-offs," Renewable Energy, Elsevier, vol. 170(C), pages 525-538.
- Luo, Anxin & Zhang, Yulong & Dai, Xiangtian & Wang, Yifan & Xu, Weihan & Lu, Yan & Wang, Min & Fan, Kangqi & Wang, Fei, 2020. "An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency," Applied Energy, Elsevier, vol. 279(C).
- Steven H. Collins & M. Bruce Wiggin & Gregory S. Sawicki, 2015. "Reducing the energy cost of human walking using an unpowered exoskeleton," Nature, Nature, vol. 522(7555), pages 212-215, June.
- Maharjan, Pukar & Bhatta, Trilochan & Salauddin Rasel, M. & Salauddin, Md. & Toyabur Rahman, M. & Park, Jae Yeong, 2019. "High-performance cycloid inspired wearable electromagnetic energy harvester for scavenging human motion energy," Applied Energy, Elsevier, vol. 256(C).
- Lawrence C. Rome & Louis Flynn & Taeseung D. Yoo, 2006. "Rubber bands reduce the cost of carrying loads," Nature, Nature, vol. 444(7122), pages 1023-1024, December.
- Liu, Mingyi & Lin, Rui & Zhou, Shengxi & Yu, Yilun & Ishida, Aki & McGrath, Margarita & Kennedy, Brook & Hajj, Muhammad & Zuo, Lei, 2018. "Design, simulation and experiment of a novel high efficiency energy harvesting paver," Applied Energy, Elsevier, vol. 212(C), pages 966-975.
- Mi, Jia & Li, Qiaofeng & Liu, Mingyi & Li, Xiaofan & Zuo, Lei, 2020. "Design, modelling, and testing of a vibration energy harvester using a novel half-wave mechanical rectification," Applied Energy, Elsevier, vol. 279(C).
- Liu, Huicong & Fu, Hailing & Sun, Lining & Lee, Chengkuo & Yeatman, Eric M., 2021. "Hybrid energy harvesting technology: From materials, structural design, system integration to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Deng, Fang & Cai, Yeyun & Fan, Xinyu & Gui, Peng & Chen, Jie, 2019. "Pressure-type generator for harvesting mechanical energy from human gait," Energy, Elsevier, vol. 171(C), pages 785-794.
- Ando Junior, O.H. & Maran, A.L.O. & Henao, N.C., 2018. "A review of the development and applications of thermoelectric microgenerators for energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 376-393.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Roberto De Fazio & Roberta Proto & Carolina Del-Valle-Soto & Ramiro Velázquez & Paolo Visconti, 2022. "New Wearable Technologies and Devices to Efficiently Scavenge Energy from the Human Body: State of the Art and Future Trends," Energies, MDPI, vol. 15(18), pages 1-37, September.
- Qi, Lingfei & Song, Juhuang & Wang, Yuan & Yi, Minyi & Zhang, Zutao & Yan, Jinyue, 2024. "Mechanical motion rectification-based electromagnetic vibration energy harvesting technology: A review," Energy, Elsevier, vol. 289(C).
- Wang, Zhen & Fan, Kangqi & Zhao, Shizhong & Wu, Shuxin & Zhang, Xuan & Zhai, Kangjia & Li, Zhiqi & He, Hua, 2024. "Archery-inspired catapult mechanism with controllable energy release for efficient ultralow-frequency energy harvesting," Applied Energy, Elsevier, vol. 356(C).
- Theetuch Chinachatchawarat & Theerawat Pattarapongsakorn & Patitta Ploypray & Thitima Jintanawan & Gridsada Phanomchoeng, 2024. "Optimizing Piezoelectric Bimorphs for Energy Harvesting from Body Motion: Finger Movement in Computer Mouse Clicking," Energies, MDPI, vol. 17(16), pages 1-18, August.
- Janjua, Ahmed Nawaz & Shaefer, Maxwell & Amini, Seyed Hassan & Noble, Aaron & Shahab, Shima, 2024. "Vibrational energy transmission in underground continuous mining: Dynamic characteristics and experimental research of field data," Applied Energy, Elsevier, vol. 354(PA).
- Guan, Zhibin & Li, Ping & Wen, Yumei & Du, Yu & Wang, Guoda, 2023. "Bubble energy harvesting suitable for weak gas sources using bubble stream release scheme," Applied Energy, Elsevier, vol. 349(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Xu & Wang, Kangda & Li, Siyu & Wang, Yadong & Sun, Daoyu & Wang, Longlong & He, Zhizhu & Tang, Wei & Liu, Huicong & Jin, Xiaoping & Li, Zhen, 2024. "An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings," Applied Energy, Elsevier, vol. 353(PA).
- Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
- Azam, Ali & Ahmed, Ammar & Kamran, Muhammad Sajid & Hai, Li & Zhang, Zutao & Ali, Asif, 2021. "Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
- Peng, Yan & Xu, Zhibing & Wang, Min & Li, Zhongjie & Peng, Jinlin & Luo, Jun & Xie, Shaorong & Pu, Huayan & Yang, Zhengbao, 2021. "Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators," Renewable Energy, Elsevier, vol. 172(C), pages 551-563.
- Qi, Lingfei & Song, Juhuang & Wang, Yuan & Yi, Minyi & Zhang, Zutao & Yan, Jinyue, 2024. "Mechanical motion rectification-based electromagnetic vibration energy harvesting technology: A review," Energy, Elsevier, vol. 289(C).
- Bogdan Dziadak & Łukasz Makowski & Mariusz Kucharek & Adam Jóśko, 2023. "Energy Harvesting for Wearable Sensors and Body Area Network Nodes," Energies, MDPI, vol. 16(4), pages 1-30, February.
- Yang, Xin & Lai, Siu-Kai & Wang, Chen & Wang, Jia-Mei & Ding, Hu, 2022. "On a spring-assisted multi-stable hybrid-integrated vibration energy harvester for ultra-low-frequency excitations," Energy, Elsevier, vol. 252(C).
- Fang, Shitong & Chen, Keyu & Lai, Zhihui & Zhou, Shengxi & Liao, Wei-Hsin, 2023. "Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations," Applied Energy, Elsevier, vol. 331(C).
- Li, Rongchun & Fan, Kangqi & Ma, Xiaoyu & Wen, Tao & Liu, Qingli & Gao, Xianming & Zhu, Jiuling & Zhang, Yan, 2023. "A rotational energy harvester with a semi-flexible one-way clutch for capturing low-frequency vibration energy," Energy, Elsevier, vol. 281(C).
- Zhou, Ning & Hou, Zehao & Zhang, Ying & Cao, Junyi & Bowen, Chris R., 2021. "Enhanced swing electromagnetic energy harvesting from human motion," Energy, Elsevier, vol. 228(C).
- Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
- Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
- Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
- Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
- Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
- Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
- Herc, Luka & Pfeifer, Antun & Duić, Neven & Wang, Fei, 2022. "Economic viability of flexibility options for smart energy systems with high penetration of renewable energy," Energy, Elsevier, vol. 252(C).
- Savolainen, Rebecka & Lahdelma, Risto, 2022. "Optimization of renewable energy for buildings with energy storages and 15-minute power balance," Energy, Elsevier, vol. 243(C).
- Karaca, Ali Erdogan & Dincer, Ibrahim & Nitefor, Michael, 2023. "A new renewable energy system integrated with compressed air energy storage and multistage desalination," Energy, Elsevier, vol. 268(C).
More about this item
Keywords
Energy harvesting; Human motion; Kinetic energy; Wearable and mobile device; Negative muscle work; Self-powered; Sustainable energy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:321:y:2022:i:c:s0306261922007218. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.