Experimental investigation of energy harvesting from sloshing phenomenon: Comparison of Newtonian and non-Newtonian fluids
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.120264
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lee, Min-seon & Kim, Chang-il & Park, Woon-ik & Cho, Jeong-ho & Paik, Jong-hoo & Jeong, Young Hun, 2019. "Energy harvesting performance of unimorph piezoelectric cantilever generator using interdigitated electrode lead zirconate titanate laminate," Energy, Elsevier, vol. 179(C), pages 373-382.
- Yang, Fan & Gao, Mingyuan & Wang, Ping & Zuo, Jianyong & Dai, Jun & Cong, Jianli, 2021. "Efficient piezoelectric harvester for random broadband vibration of rail," Energy, Elsevier, vol. 218(C).
- Wang, Ying & Wu, Yesheng & Liu, Qi & Wang, Xiaodong & Cao, Jie & Cheng, Guanggui & Zhang, Zhongqiang & Ding, Jianning & Li, Kai, 2020. "Origami triboelectric nanogenerator with double-helical structure for environmental energy harvesting," Energy, Elsevier, vol. 212(C).
- Zhao, Daoli & Zhou, Jie & Tan, Ting & Yan, Zhimiao & Sun, Weipeng & Yin, Junlian & Zhang, Wenming, 2021. "Hydrokinetic piezoelectric energy harvesting by wake induced vibration," Energy, Elsevier, vol. 220(C).
- Yang, Yiqing & Pian, Yawei & Liu, Qiang, 2019. "Design of energy harvester using rotating motion rectifier and its application on bicycle," Energy, Elsevier, vol. 179(C), pages 222-231.
- Madinei, H. & Haddad Khodaparast, H. & Friswell, M.I. & Adhikari, S., 2018. "Minimising the effects of manufacturing uncertainties in MEMS Energy harvesters," Energy, Elsevier, vol. 149(C), pages 990-999.
- Qian, Feng & Xu, Tian-Bing & Zuo, Lei, 2019. "Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism," Energy, Elsevier, vol. 189(C).
- Fan, Kangqi & Cai, Meiling & Liu, Haiyan & Zhang, Yiwei, 2019. "Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester," Energy, Elsevier, vol. 169(C), pages 356-368.
- Zou, Hong-Xiang & Li, Meng & Zhao, Lin-Chuan & Gao, Qiu-Hua & Wei, Ke-Xiang & Zuo, Lei & Qian, Feng & Zhang, Wen-Ming, 2021. "A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting," Energy, Elsevier, vol. 217(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Khan, Sohail A. & Razaq, Aneeta & Alsaedi, A. & Hayat, T., 2023. "Modified thermal and solutal fluxes through convective flow of Reiner-Rivlin material," Energy, Elsevier, vol. 283(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Zhongjie & Peng, Yan & Xu, Zhibing & Peng, Jinlin & Xin, Liming & Wang, Min & Luo, Jun & Xie, Shaorong & Pu, Huayan, 2021. "Harnessing energy from suspension systems of oceanic vehicles with high-performance piezoelectric generators," Energy, Elsevier, vol. 228(C).
- Shan, Xiaobiao & Sui, Guangdong & Tian, Haigang & Min, Zhaowei & Feng, Ju & Xie, Tao, 2022. "Numerical analysis and experiments of an underwater magnetic nonlinear energy harvester based on vortex-induced vibration," Energy, Elsevier, vol. 241(C).
- Fu, Jiyang & Zeng, Xianming & Wu, Nan & Wu, Jiurong & He, Yuncheng & Xiong, Chao & Dai, Xiaolong & Jin, Peichen & Lai, Minyi, 2024. "Design, modeling and experiments of bistable piezoelectric energy harvester with self-decreasing potential energy barrier effect," Energy, Elsevier, vol. 300(C).
- Zhang, Tingsheng & Kong, Lingji & Zhu, Zhongyin & Wu, Xiaoping & Li, Hai & Zhang, Zutao & Yan, Jinyue, 2024. "An electromagnetic vibration energy harvesting system based on series coupling input mechanism for freight railroads," Applied Energy, Elsevier, vol. 353(PA).
- He, Lipeng & Wang, Shuangjian & Zheng, Xiaotian & Liu, Lei & Tian, Xiaochao & Sun, Baoyu, 2022. "Research-based on a low-frequency non-contact magnetic coupling piezoelectric energy harvester," Energy, Elsevier, vol. 258(C).
- Hong, Seong Do & Ahn, Jung Hwan & Kim, Kyung-Bum & Kim, Jeong Hun & Cho, Jae Yong & Woo, Min Sik & Song, Yewon & Hwang, Wonseop & Jeon, Deok Hwan & Kim, Jihoon & Jeong, Se Yeong & Woo, Sang Bum & Ryu,, 2022. "Uniform stress distribution road piezoelectric generator with free-fixed-end type central strike mechanism," Energy, Elsevier, vol. 239(PA).
- Motora, Kebena Gebeyehu & Wu, Chang-Mou & Rani, Gokana Mohana & Yen, Wan-Tzu & Lin, Kai-Shiang, 2023. "Effect of electrode patterns on piezoelectric energy harvesting property of zinc oxide polyvinylidene fluoride based piezoelectric nanogenerator," Renewable Energy, Elsevier, vol. 217(C).
- He, Jian & Fan, Xueming & Mu, Jiliang & Wang, Chao & Qian, Jichao & Li, Xiucheng & Hou, Xiaojuan & Geng, Wenping & Wang, Xiangdong & Chou, Xiujian, 2020. "3D full-space triboelectric-electromagnetic hybrid nanogenerator for high-efficient mechanical energy harvesting in vibration system," Energy, Elsevier, vol. 194(C).
- Yar, Adem, 2021. "High performance of multi-layered triboelectric nanogenerators for mechanical energy harvesting," Energy, Elsevier, vol. 222(C).
- Rezaei, Masoud & Talebitooti, Roohollah & Liao, Wei-Hsin, 2022. "Investigations on magnetic bistable PZT-based absorber for concurrent energy harvesting and vibration mitigation: Numerical and analytical approaches," Energy, Elsevier, vol. 239(PE).
- Manuel Serrano & Kevin Larkin & Sergei Tretiak & Abdessattar Abdelkefi, 2023. "Piezoelectric Energy Harvesting Gyroscopes: Comparative Modeling and Effectiveness," Energies, MDPI, vol. 16(4), pages 1-21, February.
- Zhou, Ning & Hou, Zehao & Zhang, Ying & Cao, Junyi & Bowen, Chris R., 2021. "Enhanced swing electromagnetic energy harvesting from human motion," Energy, Elsevier, vol. 228(C).
- Jing Li & Peiben Wang & Yuewen Gao & Dong Guan & Shengquan Li, 2022. "Quantitative Power Flow Characterization of Energy Harvesting Shock Absorbers by Considering Motion Bifurcation," Energies, MDPI, vol. 15(19), pages 1-21, September.
- Fang, Shitong & Miao, Gang & Chen, Keyu & Xing, Juntong & Zhou, Shengxi & Yang, Zhichun & Liao, Wei-Hsin, 2022. "Broadband energy harvester for low-frequency rotations utilizing centrifugal softening piezoelectric beam array," Energy, Elsevier, vol. 241(C).
- Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).
- Xu, Yifei & Xian, Tongrui & Chen, Chen & Wang, Guosen & Wang, Mengdi & Shi, Weijie, 2024. "Mathematical modeling and parameter optimization of a stacked piezoelectric energy harvester based on water pressure pulsation," Energy, Elsevier, vol. 292(C).
- Zhou, Xu & Wang, Kangda & Li, Siyu & Wang, Yadong & Sun, Daoyu & Wang, Longlong & He, Zhizhu & Tang, Wei & Liu, Huicong & Jin, Xiaoping & Li, Zhen, 2024. "An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings," Applied Energy, Elsevier, vol. 353(PA).
- Sun, Hongjun & Yang, Zhen & Li, Jinxia & Ding, Hongbing & Lv, Pengfei, 2024. "Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS," Energy, Elsevier, vol. 298(C).
- Liu, Mingyi & Qian, Feng & Mi, Jia & Zuo, Lei, 2022. "Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions," Applied Energy, Elsevier, vol. 321(C).
- Wang, Yilong & Yang, Zhengbao & Cao, Dengqing, 2021. "On the offset distance of rotational piezoelectric energy harvesters," Energy, Elsevier, vol. 220(C).
More about this item
Keywords
Energy harvesting; Sloshing; Non-Newtonian; Electromagnetic; Response surface method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:225:y:2021:i:c:s0360544221005132. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.