Piezoelectric Energy Harvesting Gyroscopes: Comparative Modeling and Effectiveness
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lee, Min-seon & Kim, Chang-il & Park, Woon-ik & Cho, Jeong-ho & Paik, Jong-hoo & Jeong, Young Hun, 2019. "Energy harvesting performance of unimorph piezoelectric cantilever generator using interdigitated electrode lead zirconate titanate laminate," Energy, Elsevier, vol. 179(C), pages 373-382.
- Chen, Cheng & Xu, Tian-Bing & Yazdani, Atousa & Sun, Jian-Qiao, 2021. "A high density piezoelectric energy harvesting device from highway traffic — System design and road test," Applied Energy, Elsevier, vol. 299(C).
- Cho, Jae Yong & Kim, Kyung-Bum & Hwang, Won Seop & Yang, Chan Ho & Ahn, Jung Hwan & Hong, Seong Do & Jeon, Deok Hwan & Song, Gyeong Ju & Ryu, Chul Hee & Woo, Sang Bum & Kim, Jihoon & Lee, Tae Hee & Ch, 2019. "A multifunctional road-compatible piezoelectric energy harvester for autonomous driver-assist LED indicators with a self-monitoring system," Applied Energy, Elsevier, vol. 242(C), pages 294-301.
- Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
- Chen, Cheng & Sharafi, Amir & Sun, Jian-Qiao, 2020. "A high density piezoelectric energy harvesting device from highway traffic – Design analysis and laboratory validation," Applied Energy, Elsevier, vol. 269(C).
- Qian, Feng & Xu, Tian-Bing & Zuo, Lei, 2019. "Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism," Energy, Elsevier, vol. 189(C).
- Salazar, R. & Serrano, M. & Abdelkefi, A., 2020. "Fatigue in piezoelectric ceramic vibrational energy harvesting: A review," Applied Energy, Elsevier, vol. 270(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zou, Hong-Xiang & Zhu, Quan-Wei & He, Jia-Yi & Zhao, Lin-Chuan & Wei, Ke-Xiang & Zhang, Wen-Ming & Du, Rong-Hua & Liu, Sheng, 2024. "Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management," Applied Energy, Elsevier, vol. 353(PA).
- Chen, Cheng & Xu, Tian-Bing & Yazdani, Atousa & Sun, Jian-Qiao, 2021. "A high density piezoelectric energy harvesting device from highway traffic — System design and road test," Applied Energy, Elsevier, vol. 299(C).
- Li, Zhongjie & Peng, Yan & Xu, Zhibing & Peng, Jinlin & Xin, Liming & Wang, Min & Luo, Jun & Xie, Shaorong & Pu, Huayan, 2021. "Harnessing energy from suspension systems of oceanic vehicles with high-performance piezoelectric generators," Energy, Elsevier, vol. 228(C).
- Hong, Seong Do & Ahn, Jung Hwan & Kim, Kyung-Bum & Kim, Jeong Hun & Cho, Jae Yong & Woo, Min Sik & Song, Yewon & Hwang, Wonseop & Jeon, Deok Hwan & Kim, Jihoon & Jeong, Se Yeong & Woo, Sang Bum & Ryu,, 2022. "Uniform stress distribution road piezoelectric generator with free-fixed-end type central strike mechanism," Energy, Elsevier, vol. 239(PA).
- Maroofiazar, Rasool & Fahimi Farzam, Maziar, 2021. "Experimental investigation of energy harvesting from sloshing phenomenon: Comparison of Newtonian and non-Newtonian fluids," Energy, Elsevier, vol. 225(C).
- Fang, Shitong & Miao, Gang & Chen, Keyu & Xing, Juntong & Zhou, Shengxi & Yang, Zhichun & Liao, Wei-Hsin, 2022. "Broadband energy harvester for low-frequency rotations utilizing centrifugal softening piezoelectric beam array," Energy, Elsevier, vol. 241(C).
- Xian, Tongrui & Xu, Yifei & Chen, Chen & Luo, Xiaohui & Zhao, Haixia & Zhang, Yongtao & Shi, Weijie, 2024. "Experimental and theory study on a stacked piezoelectric energy harvester for pressure pulsation in water hydraulic system," Renewable Energy, Elsevier, vol. 225(C).
- Liu, Mingyi & Qian, Feng & Mi, Jia & Zuo, Lei, 2022. "Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions," Applied Energy, Elsevier, vol. 321(C).
- Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
- Poblete, A. & Ruiz, R.O. & Jia, G., 2024. "Bayesian model class selection of nonlinear constitutive relationships for piezoelectric energy harvesters with small set of observations," Energy, Elsevier, vol. 301(C).
- Wang, Chaohui & Liu, Jikang & Yuan, Huazhi & Wang, Shuai & Jia, Xiaodong & Lu, Qiang, 2024. "Design and on-site alert effect of piezoelectric device with amplified displacement for improving clean-energy collection," Energy, Elsevier, vol. 307(C).
- Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
- Na, Yonghyeon & Lee, Min-Seon & Lee, Jung Woo & Jeong, Young Hun, 2020. "Wind energy harvesting from a magnetically coupled piezoelectric bimorph cantilever array based on a dynamic magneto-piezo-elastic structure," Applied Energy, Elsevier, vol. 264(C).
- Kaiyuan Zhao & Qichang Zhang & Wei Wang, 2019. "Optimization of Galloping Piezoelectric Energy Harvester with V-Shaped Groove in Low Wind Speed," Energies, MDPI, vol. 12(24), pages 1-18, December.
- Wang, Chen & Lai, Siu-Kai & Wang, Jia-Mei & Feng, Jing-Jing & Ni, Yi-Qing, 2021. "An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power," Applied Energy, Elsevier, vol. 291(C).
- Mai, Van-Phung & Lee, Tsung-Yu & Yang, Ruey-Jen, 2022. "Enhanced-performance droplet-triboelectric nanogenerators with composite polymer films and electrowetting-assisted charge injection," Energy, Elsevier, vol. 260(C).
- Xie, Xiangdong & Wang, Zijing & Liu, Dezheng & Du, Guofeng & Zhang, Jinfeng, 2020. "An experimental study on a novel cylinder harvester made of L-shaped piezoelectric coupled beams with a high efficiency," Energy, Elsevier, vol. 212(C).
- Wang, Chaohui & Cao, Hongyun & Wang, Shuai & Gao, Zhiwei, 2021. "Design and testing of road piezoelectric power generation device based on traffic environment applicability," Applied Energy, Elsevier, vol. 299(C).
- Yonghyeon Na & Min-Seon Lee & Jung Woo Lee & Young Hun Jeong, 2021. "Horizontally Assembled Trapezoidal Piezoelectric Cantilevers Driven by Magnetic Coupling for Rotational Energy Harvester Applications," Energies, MDPI, vol. 14(2), pages 1-16, January.
- Iman Izadgoshasb & Yee Yan Lim & Ricardo Vasquez Padilla & Mohammadreza Sedighi & Jeremy Paul Novak, 2019. "Performance Enhancement of a Multiresonant Piezoelectric Energy Harvester for Low Frequency Vibrations," Energies, MDPI, vol. 12(14), pages 1-16, July.
More about this item
Keywords
piezoelectricity; vibration energy harvesting; electromechanical modeling; gyroscopes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2000-:d:1071901. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.