IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v300y2024ics0360544224013689.html
   My bibliography  Save this article

Noble metal modified copper-exchanged mordenite zeolite (Cu-ex-MOR) catalysts for catalyzing the methane efficient gas-phase synthesis methanol

Author

Listed:
  • Xie, Xuanlan
  • Li, Chang
  • Lu, Zhiheng
  • Wang, Yishuang
  • Yang, Wenqiang
  • Chen, Mingqiang
  • Li, Wenzhi

Abstract

Copper mordenite catalysts are key for methane oxidation to methanol, yet lack sufficient activity. In this paper, noble metal (Au, Ru, Pt and Pd) modified copper ion-exchanged mordenite catalysts were prepared by the ion-exchange method for further improving the methanol yield in the gas-phase continuous catalytic direct partial oxidation of methane to methanol reaction, and the role of noble metal doping on Cu-ex-MOR catalysts was investigated. Experimental results showed that the doping of Ru resulted in a significant increase in the methanol yield of Ru/Cu-ex-MOR catalyst to 157.36 μmol/gcat/h compared to that of Cu-ex-MOR catalyst (12.89 μmol/gcat/h). SEM, XRD, FT-IR, N2 adsorption-desorption, XPS, NH3-TPD and H2-TPR results showed that Ru/Cu-ex-MOR had uniformly dispersed Ru elements and the largest number of surface acidic and oxidation sites, which facilitated the adsorption and activation of methane. Additionally, it was found by TEM, in situ FT-IR and DFT characterization that Ru played a role in stabilizing the Cu active sites, the adsorptive activation of water on the Ru site and the H-transfer process reduced the energy required for breaking C–H bond of CH4 at the Cu active site, which significantly improved the methane activation capacity of the Ru/Cu-ex-MOR catalysts, resulting in higher methanol yields.

Suggested Citation

  • Xie, Xuanlan & Li, Chang & Lu, Zhiheng & Wang, Yishuang & Yang, Wenqiang & Chen, Mingqiang & Li, Wenzhi, 2024. "Noble metal modified copper-exchanged mordenite zeolite (Cu-ex-MOR) catalysts for catalyzing the methane efficient gas-phase synthesis methanol," Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013689
    DOI: 10.1016/j.energy.2024.131595
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224013689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guodong Sun & Zhi-Jian Zhao & Rentao Mu & Shenjun Zha & Lulu Li & Sai Chen & Ketao Zang & Jun Luo & Zhenglong Li & Stephen C. Purdy & A. Jeremy Kropf & Jeffrey T. Miller & Liang Zeng & Jinlong Gong, 2018. "Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Jin, Jian & Wang, Hongsheng & Shen, Yili & Shu, Ziyun & Liu, Taixiu & Li, Wenjia, 2023. "Thermodynamic analysis of methane to methanol through a two-step process driven by concentrated solar energy," Energy, Elsevier, vol. 273(C).
    3. Yang, Yu & Liu, Jing & Shen, Weifeng & Li, Jie & Chien, I-Lung, 2018. "High-efficiency utilization of CO2 in the methanol production by a novel parallel-series system combining steam and dry methane reforming," Energy, Elsevier, vol. 158(C), pages 820-829.
    4. Lee, Junyoung & Kim, Sunghoon & Kim, Yong Tae & Kwak, Geunjae & Kim, Jiyong, 2020. "Full carbon upcycling of landfill gas into methanol by integrating CO2 hydrogenation and methane reforming: Process development and techno-economic analysis," Energy, Elsevier, vol. 199(C).
    5. Blumberg, Timo & Lee, Young Duk & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Exergoenvironmental analysis of methanol production by steam reforming and autothermal reforming of natural gas," Energy, Elsevier, vol. 181(C), pages 1273-1284.
    6. Mei, Zhenfei & Chen, Dezhen & Qian, Kezhen & Zhang, Ruina & Yu, Weiwei, 2022. "Producing eco-methane with raw syngas containing miscellaneous gases and tar by using a municipal solid waste char-based catalyst," Energy, Elsevier, vol. 254(PA).
    7. Touahra, Fouzia & Chebout, Redouane & Lerari, Djahida & Halliche, Djamila & Bachari, Khaldoun, 2019. "Role of the nanoparticles of Cu-Co alloy derived from perovskite in dry reforming of methane," Energy, Elsevier, vol. 171(C), pages 465-474.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    2. Park, Min-Ju & Kim, Hak-Min & Gu, Yun-Jeong & Jeong, Dae-Woon, 2023. "Optimization of biogas-reforming conditions considering carbon formation, hydrogen production, and energy efficiencies," Energy, Elsevier, vol. 265(C).
    3. Mehrpooya, Mehdi & Ansarinasab, Hojat & Mousavi, Seyed Ali, 2021. "Life cycle assessment and exergoeconomic analysis of the multi-generation system based on fuel cell for methanol, power, and heat production," Renewable Energy, Elsevier, vol. 172(C), pages 1314-1332.
    4. Do, Thai Ngan & Hur, Young Gul & Chung, Hegwon & Kim, Jiyong, 2023. "Potentials and benefit assessment of green fuels from residue gas via gas-to-liquid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Chein, Rei-Yu & Hsu, Wen-Huai, 2019. "Thermodynamic analysis of syngas production via chemical looping dry reforming of methane," Energy, Elsevier, vol. 180(C), pages 535-547.
    6. Kwon, Yuree & An, Jinjoo, 2024. "Comparative life cycle assessment of landfill gas utilization in South Korea with parametric uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    7. Pérez Sánchez, Jordán & Aguillón Martínez, Javier Eduardo & Mazur Czerwiec, Zdzislaw & Zavala Guzmán, Alan Martín, 2019. "Theoretical assessment of integration of CCS in the Mexican electrical sector," Energy, Elsevier, vol. 167(C), pages 828-840.
    8. Wei Liu & Haisong Feng & Yusen Yang & Yiming Niu & Lei Wang & Pan Yin & Song Hong & Bingsen Zhang & Xin Zhang & Min Wei, 2022. "Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Zhi Wen Chen & Jian Li & Pengfei Ou & Jianan Erick Huang & Zi Wen & LiXin Chen & Xue Yao & GuangMing Cai & Chun Cheng Yang & Chandra Veer Singh & Qing Jiang, 2024. "Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Osat, Mohammad & Shojaati, Faryar & Osat, Mojtaba, 2023. "A solar-biomass system associated with CO2 capture, power generation and waste heat recovery for syngas production from rice straw and microalgae: Technological, energy, exergy, exergoeconomic and env," Applied Energy, Elsevier, vol. 340(C).
    11. Mei, Zhenfei & Chen, Dezhen & Qian, Kezhen & Yin, Lijie & Hong, Liu, 2024. "Producing methane from dry municipal solid wastes: A complete roadmap and the influence of char catalyst," Energy, Elsevier, vol. 290(C).
    12. Kotowicz, Janusz & Węcel, Daniel & Brzęczek, Mateusz, 2021. "Analysis of the work of a “renewable” methanol production installation based ON H2 from electrolysis and CO2 from power plants," Energy, Elsevier, vol. 221(C).
    13. Marques, Adriano S. & Carvalho, Monica & Ochoa, Alvaro A.V. & Abrahão, Raphael & Santos, Carlos A.C., 2021. "Life cycle assessment and comparative exergoenvironmental evaluation of a micro-trigeneration system," Energy, Elsevier, vol. 216(C).
    14. Ray, Debjyoti & Nepak, Devadutta & Vinodkumar, T. & Subrahmanyam, Ch., 2019. "g-C3N4 promoted DBD plasma assisted dry reforming of methane," Energy, Elsevier, vol. 183(C), pages 630-638.
    15. Balli, Ozgur & Kale, Utku & Rohács, Dániel & Hikmet Karakoc, T., 2022. "Environmental damage cost and exergoenvironmental evaluations of piston prop aviation engines for the landing and take-off flight phases," Energy, Elsevier, vol. 261(PB).
    16. Kim, Dongin & Han, Jeehoon, 2020. "Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst," Energy, Elsevier, vol. 198(C).
    17. Byun, Manhee & Kim, Heehyang & Lee, Hyunjun & Lim, Dongjun & Lim, Hankwon, 2022. "Conceptual design for methanol steam reforming in serial packed-bed reactors and membrane filters: Economic and environmental perspectives," Energy, Elsevier, vol. 241(C).
    18. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    19. Liu-Chun Wang & Li-Chan Chang & Wen-Qi Chen & Yi-Hsin Chien & Po-Ya Chang & Chih-Wen Pao & Yin-Fen Liu & Hwo-Shuenn Sheu & Wen-Pin Su & Chen-Hao Yeh & Chen-Sheng Yeh, 2022. "Atomically dispersed golds on degradable zero-valent copper nanocubes augment oxygen driven Fenton-like reaction for effective orthotopic tumor therapy," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    20. Ye, Run-Ping & Gong, Weibo & Sun, Zhao & Sheng, Qingtao & Shi, Xiufeng & Wang, Tongtong & Yao, Yi & Razink, Joshua J. & Lin, Ling & Zhou, Zhangfeng & Adidharma, Hertanto & Tang, Jinke & Fan, Maohong &, 2019. "Enhanced stability of Ni/SiO2 catalyst for CO2 methanation: Derived from nickel phyllosilicate with strong metal-support interactions," Energy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.