IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v166y2019icp569-576.html
   My bibliography  Save this article

Linear α-alcohols production from supercritical ethanol over Cu/Al2O3 catalyst

Author

Listed:
  • Chistyakov, A.V.
  • Nikolaev, S.A.
  • Zharova, P.A.
  • Tsodikov, M.V.
  • Manenti, F.

Abstract

In this paper, Cu/Al2O3 catalysts with different metal loadings was applied for the direct ethanol conversion into linear α-alcohols in the supercritical regime. 5% Cu/Al2O3 catalyst was found to provide ethanol conversion into 1-butanol, 1-hexanol and 1-octanol with 80.2% selectivity of 1-butanol or total selectivity of linear α-alcohols of 95.5 at 33.5% conversion of ethanol. The supercritical conditions allow to increase catalysts productivity in comparison with subcritical regime. Kinetic features of the reaction and the effect of water content in the feed mixture were investigated.

Suggested Citation

  • Chistyakov, A.V. & Nikolaev, S.A. & Zharova, P.A. & Tsodikov, M.V. & Manenti, F., 2019. "Linear α-alcohols production from supercritical ethanol over Cu/Al2O3 catalyst," Energy, Elsevier, vol. 166(C), pages 569-576.
  • Handle: RePEc:eee:energy:v:166:y:2019:i:c:p:569-576
    DOI: 10.1016/j.energy.2018.10.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218320619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Jie & Yuan, Zhenhong & Chang, Shiyan, 2018. "Long-term cost trajectories for biofuels in China projected to 2050," Energy, Elsevier, vol. 160(C), pages 452-465.
    2. M, Vinod Babu & K, Madhu Murthy & G, Amba Prasad Rao, 2017. "Butanol and pentanol: The promising biofuels for CI engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1068-1088.
    3. Li, Qingwei & Wu, Jiang & Wei, Hongqi, 2018. "Reduction of elemental mercury in coal-fired boiler flue gas with computational intelligence approach," Energy, Elsevier, vol. 160(C), pages 753-762.
    4. Xie, Tao & Xu, Kai-Di & He, Ya-Ling & Wang, Kun & Yang, Bo-Lun, 2018. "Thermodynamic and kinetic analysis of an integrated solar thermochemical energy storage system for dry-reforming of methane," Energy, Elsevier, vol. 164(C), pages 937-950.
    5. Veselovskaya, Janna V. & Parunin, Pavel D. & Netskina, Olga V. & Kibis, Lidiya S. & Lysikov, Anton I. & Okunev, Aleksey G., 2018. "Catalytic methanation of carbon dioxide captured from ambient air," Energy, Elsevier, vol. 159(C), pages 766-773.
    6. Jadhav, Arvind H. & Prasad, Divya & Jadhav, Harsharaj S. & Nagaraja, Bhari Mallanna & Seo, Jeong Gil, 2018. "Tailoring and exploring the basicity of magnesium oxide nanostructures in ionic liquids for Claisen-Schmidt condensation reaction," Energy, Elsevier, vol. 160(C), pages 635-647.
    7. Jin, Chao & Yao, Mingfa & Liu, Haifeng & Lee, Chia-fon F. & Ji, Jing, 2011. "Progress in the production and application of n-butanol as a biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4080-4106.
    8. Fan, Yongsheng & Zhu, Lei & Fan, Lele & Zhao, Weidong & Cai, Yixi & Chen, Yuwei & Jin, Lizhu & Xiong, Yonglian, 2018. "Catalytic upgrading of biomass pyrolysis volatiles to bio-fuel under pre-plasma enhanced catalysis (PPEC) system," Energy, Elsevier, vol. 162(C), pages 224-236.
    9. Yoshimoto, Y. & Kinoshita, E. & Shanbu, L. & Ohmura, T., 2013. "Influence of 1-butanol addition on diesel combustion with palm oil methyl ester/gas oil blends," Energy, Elsevier, vol. 61(C), pages 44-51.
    10. Han, Xiaoye & Yang, Zhenyi & Wang, Meiping & Tjong, Jimi & Zheng, Ming, 2017. "Clean combustion of n-butanol as a next generation biofuel for diesel engines," Applied Energy, Elsevier, vol. 198(C), pages 347-359.
    11. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    12. Alvarez Serafini, Mariana S. & Reinoso, Deborath M. & Tonetto, Gabriela M., 2018. "Response surface study and kinetic modelling of biodiesel synthesis catalyzed by zinc stearate," Energy, Elsevier, vol. 164(C), pages 264-274.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Fernández-Rodríguez & Magín Lapuerta & Lizzie German, 2021. "Progress in the Use of Biobutanol Blends in Diesel Engines," Energies, MDPI, vol. 14(11), pages 1-22, May.
    2. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    3. Carolin Nuortila & Riikka Help & Katriina Sirviö & Helena Suopanki & Sonja Heikkilä & Seppo Niemi, 2020. "Selected Fuel Properties of Alcohol and Rapeseed Oil Blends," Energies, MDPI, vol. 13(15), pages 1-11, July.
    4. Liang, Zhirong & Yu, Zhenhong & Liu, Haoye & Chen, Longfei & Huang, Xinyan, 2022. "Combustion and emission characteristics of a compression ignition engine burning a wide range of conventional hydrocarbon and alternative fuels," Energy, Elsevier, vol. 250(C).
    5. Liu, Kaimin & Fu, Jianqin & Deng, Banglin & Yang, Jing & Tang, Qijun & Liu, Jingping, 2014. "The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends," Energy, Elsevier, vol. 73(C), pages 703-715.
    6. Chiet Choo, Edwin Jia & Cheng, Xinwei & Scribano, Gianfranco & Ng, Hoon Kiat & Gan, Suyin, 2023. "Numerical investigation on the temporal and quasi-steady state soot characteristics of n-dodecane-n-butanol spray combustion," Energy, Elsevier, vol. 268(C).
    7. EL-Seesy, Ahmed I. & Kayatas, Zafer & Hawi, Meshack & Kosaka, Hidenori & He, Zhixia, 2020. "Combustion and emission characteristics of a rapid compression-expansion machine operated with N-heptanol-methyl oleate biodiesel blends," Renewable Energy, Elsevier, vol. 147(P1), pages 2064-2076.
    8. Chen, Hao & Su, Xin & He, Jingjing & Zhang, Peng & Xu, Hongming & Zhou, Chenglong, 2021. "Investigation on combustion characteristics of cyclopentanol/diesel fuel blends in an optical engine," Renewable Energy, Elsevier, vol. 167(C), pages 811-829.
    9. Yadav, Jaykumar & Ramesh, A., 2018. "Injection strategies for reducing smoke and improving the performance of a butanol-diesel common rail dual fuel engine," Applied Energy, Elsevier, vol. 212(C), pages 1-12.
    10. M, Vinod Babu & K, Madhu Murthy & G, Amba Prasad Rao, 2017. "Butanol and pentanol: The promising biofuels for CI engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1068-1088.
    11. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Huang, Haozhong & Liu, Qingsheng & Teng, Wenwen & Pan, Mingzhang & Liu, Chang & Wang, Qingxin, 2018. "Improvement of combustion performance and emissions in diesel engines by fueling n-butanol/diesel/PODE3–4 mixtures," Applied Energy, Elsevier, vol. 227(C), pages 38-48.
    13. Krishnan, M. Gowthama & Rajkumar, Sundararajan, 2022. "Effects of dual fuel combustion on performance, emission and energy-exergy characteristics of diesel engine fuelled with diesel-isobutanol and biodiesel-isobutanol," Energy, Elsevier, vol. 252(C).
    14. Puricelli, S. & Cardellini, G. & Casadei, S. & Faedo, D. & van den Oever, A.E.M. & Grosso, M., 2021. "A review on biofuels for light-duty vehicles in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. EL-Seesy, Ahmed I. & He, Zhixia & Kosaka, Hidenori, 2021. "Combustion and emission characteristics of a common rail diesel engine run with n-heptanol-methyl oleate mixtures," Energy, Elsevier, vol. 214(C).
    16. Soloiu, Valentin & Moncada, Jose D. & Gaubert, Remi & Knowles, Aliyah & Molina, Gustavo & Ilie, Marcel & Harp, Spencer & Wiley, Justin T., 2018. "Reactivity Controlled Compression Ignition combustion and emissions using n-butanol and methyl oleate," Energy, Elsevier, vol. 165(PB), pages 911-924.
    17. Qian, Yong & Chen, Feier & Zhang, Yahui & Tao, Wencao & Han, Dong & Lu, Xingcai, 2019. "Combustion and regulated/unregulated emissions of a direct injection spark ignition engine fueled with C3-C5 alcohol/gasoline surrogate blends," Energy, Elsevier, vol. 174(C), pages 779-791.
    18. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    19. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    20. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:166:y:2019:i:c:p:569-576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.