IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v10y2020i4p715-724.html
   My bibliography  Save this article

Synthesis of fumed silica supported Ni catalyst for carbon dioxide conversion to methane

Author

Listed:
  • Ahmed Aheed Ali Mohammed
  • Mohammed Ali H Saleh Saad
  • Anand Kumar
  • Mohammed J Al‐Marri

Abstract

In this study, we report the synthesis of a fumed silica supported Ni‐based catalyst for carbon dioxide conversion to methane. Ni/fumed‐SiO2 was prepared by loading the active agent precursor solution on the high surface area fumed SiO2 through the wet impregnation technique. Thereafter, the resulting powder was dried and reduced under hydrogen flow at 750°C for 3 h to get the desired active agent. The CO2 catalytic hydrogenation was performed using a flow reactor between 50 and 650°C temperature, where it showed good catalytic activity and selectivity for methane. In addition, it is found to be highly stable under reaction conditions for 16 h time on stream. Fresh and used (after the stability test) catalyst samples were characterized using different techniques, such as XRD, TEM, SEM/EDX, to investigate the structural and morphological properties, and effect of exposure to reaction conditions on the catalysts. Furthermore, the reaction mechanism was investigated using in‐situ DRIFT in the temperature range 50–450°C. The results revealed the formation of formate species at early reaction stages, followed by CO that was detected as linearly adsorbed on Ni surface, and lastly methane formation. © 2020 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Ahmed Aheed Ali Mohammed & Mohammed Ali H Saleh Saad & Anand Kumar & Mohammed J Al‐Marri, 2020. "Synthesis of fumed silica supported Ni catalyst for carbon dioxide conversion to methane," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 715-724, August.
  • Handle: RePEc:wly:greenh:v:10:y:2020:i:4:p:715-724
    DOI: 10.1002/ghg.1975
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.1975
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.1975?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ye, Run-Ping & Gong, Weibo & Sun, Zhao & Sheng, Qingtao & Shi, Xiufeng & Wang, Tongtong & Yao, Yi & Razink, Joshua J. & Lin, Ling & Zhou, Zhangfeng & Adidharma, Hertanto & Tang, Jinke & Fan, Maohong &, 2019. "Enhanced stability of Ni/SiO2 catalyst for CO2 methanation: Derived from nickel phyllosilicate with strong metal-support interactions," Energy, Elsevier, vol. 188(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soohyun Kim & Yunxia Yang & Renata Lippi & Hokyung Choi & Sangdo Kim & Donghyuk Chun & Hyuk Im & Sihyun Lee & Jiho Yoo, 2021. "Low-Rank Coal Supported Ni Catalysts for CO 2 Methanation," Energies, MDPI, vol. 14(8), pages 1-13, April.
    2. Nam, Hyungseok & Kim, Jung Hwan & Kim, Hana & Kim, Min Jae & Jeon, Sang-Goo & Jin, Gyoung-Tae & Won, Yooseob & Hwang, Byung Wook & Lee, Seung-Yong & Baek, Jeom-In & Lee, Doyeon & Seo, Myung Won & Ryu,, 2021. "CO2 methanation in a bench-scale bubbling fluidized bed reactor using Ni-based catalyst and its exothermic heat transfer analysis," Energy, Elsevier, vol. 214(C).
    3. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Martyna Przydacz & Marcin Jędrzejczyk & Jacek Rogowski & Małgorzata Szynkowska-Jóźwik & Agnieszka M. Ruppert, 2020. "Highly Efficient Production of DMF from Biomass-Derived HMF on Recyclable Ni-Fe/TiO 2 Catalysts," Energies, MDPI, vol. 13(18), pages 1-14, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:10:y:2020:i:4:p:715-724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.