IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v179y2019icp173-185.html
   My bibliography  Save this article

Optimization of the performance, operation conditions and purge rate for a dead-ended anode proton exchange membrane fuel cell using an analytical model

Author

Listed:
  • Dashti, Isar
  • Asghari, Saeed
  • Goudarzi, Mohammad
  • Meyer, Quentin
  • Mehrabani-Zeinabad, Arjomand
  • Brett, Dan J.L.

Abstract

Operating proton exchange membrane fuel cells in dead-ended anode mode results in fewer subsystem components and a lower cost and less complex system. However, dead-ended operation results in a gradual accumulation of water and impurities within the anode compartment, which leads to performance degradation. Therefore, anode purging is required to partially remove impurities and water from the anode and to recover performance. In the present study, a mathematical model, incorporating nitrogen crossover from the cathode to the anode and water build-up in the anode is developed. This model simulates the dead-ended anode proton exchange membrane fuel cell performance during the purge and the subsequent performance recovery. The model is in good agreement with experimental results. By using this model and introducing the concept of the ‘total wasted energy’, the purge parameters (purge interval and purge duration) can be optimized. The predicted optimum purge duration and purge interval for a sample single cell are 25 ms and 260 s, respectively. The effect of operating condition parameters on this optimization are investigated, showing that the hydrogen purity has a strong effect on the total wasted energy. By increasing the hydrogen purity from 99.5% to 99.99%, the efficiency increases by 2.4%.

Suggested Citation

  • Dashti, Isar & Asghari, Saeed & Goudarzi, Mohammad & Meyer, Quentin & Mehrabani-Zeinabad, Arjomand & Brett, Dan J.L., 2019. "Optimization of the performance, operation conditions and purge rate for a dead-ended anode proton exchange membrane fuel cell using an analytical model," Energy, Elsevier, vol. 179(C), pages 173-185.
  • Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:173-185
    DOI: 10.1016/j.energy.2019.04.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219307510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yong-Song & Yang, Chih-Wei & Lee, Jiunn-Yih, 2014. "Implementation and evaluation for anode purging of a fuel cell based on nitrogen concentration," Applied Energy, Elsevier, vol. 113(C), pages 1519-1524.
    2. Tsai, Shang-Wen & Chen, Yong-Song, 2017. "A mathematical model to study the energy efficiency of a proton exchange membrane fuel cell with a dead-ended anode," Applied Energy, Elsevier, vol. 188(C), pages 151-159.
    3. Wang, Bowen & Deng, Hao & Jiao, Kui, 2018. "Purge strategy optimization of proton exchange membrane fuel cell with anode recirculation," Applied Energy, Elsevier, vol. 225(C), pages 1-13.
    4. Yang, Chih-Wei & Chen, Yong-Song, 2014. "A mathematical model to study the performance of a proton exchange membrane fuel cell in a dead-ended anode mode," Applied Energy, Elsevier, vol. 130(C), pages 113-121.
    5. Soopee, Asif & Sasmito, Agus P. & Shamim, Tariq, 2019. "Water droplet dynamics in a dead-end anode proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 233, pages 300-311.
    6. Rabbani, Abid & Rokni, Masoud, 2013. "Effect of nitrogen crossover on purging strategy in PEM fuel cell systems," Applied Energy, Elsevier, vol. 111(C), pages 1061-1070.
    7. Jang, Jer-Huan & Yan, Wei-Mon & Chiu, Han-Chieh & Lui, Jun-Yi, 2015. "Dynamic cell performance of kW-grade proton exchange membrane fuel cell stack with dead-ended anode," Applied Energy, Elsevier, vol. 142(C), pages 108-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santos, Diogo F.M. & Ferreira, Rui B. & Falcão, D.S. & Pinto, A.M.F.R., 2022. "Evaluation of a fuel cell system designed for unmanned aerial vehicles," Energy, Elsevier, vol. 253(C).
    2. Chen, Ben & Zhou, Haoran & He, Shaowen & Meng, Kai & Liu, Yang & Cai, Yonghua, 2021. "Numerical simulation on purge strategy of proton exchange membrane fuel cell with dead-ended anode," Energy, Elsevier, vol. 234(C).
    3. Yu, Xianxian & Cai, Shanshan & Luo, Xiaobing & Tu, Zhengkai, 2024. "Barrel effect in an air-cooled proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 286(C).
    4. Hosseini, Mirollah & Afrouzi, Hamid Hassanzadeh & Arasteh, Hossein & Toghraie, Davood, 2019. "Energy analysis of a proton exchange membrane fuel cell (PEMFC) with an open-ended anode using agglomerate model: A CFD study," Energy, Elsevier, vol. 188(C).
    5. Behzadi, Amirmohammad & Arabkoohsar, Ahmad & Gholamian, Ehsan, 2020. "Multi-criteria optimization of a biomass-fired proton exchange membrane fuel cell integrated with organic rankine cycle/thermoelectric generator using different gasification agents," Energy, Elsevier, vol. 201(C).
    6. Yu, Xianxian & Luo, Xiaobing & Tu, Zhengkai, 2023. "Development of a compact high-power density air-cooled proton exchange membrane fuel cell stack with ultrathin steel bipolar plates," Energy, Elsevier, vol. 270(C).
    7. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    8. Bai, Xingying & Luo, Lizhong & Huang, Bi & Jian, Qifei & Cheng, Zongyi, 2022. "Performance improvement of proton exchange membrane fuel cell stack by dual-path hydrogen supply," Energy, Elsevier, vol. 246(C).
    9. Xu, Sheng & Yin, Bifeng & Li, Zekai & Dong, Fei, 2023. "A review on gas purge of proton exchange membrane fuel cells: Mechanisms, experimental approaches, numerical approaches, and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    10. Fan, Lixin & liu, Yang & Luo, Xiaobing & Tu, Zhengkai & Chan, Siew Hwa, 2023. "A novel gas supply configuration for hydrogen utilization improvement in a multi-stack air-cooling PEMFC system with dead-ended anode," Energy, Elsevier, vol. 282(C).
    11. Cai, Yonghua & Wu, Di & Sun, Jingming & Chen, Ben, 2021. "The effect of cathode channel blockages on the enhanced mass transfer and performance of PEMFC," Energy, Elsevier, vol. 222(C).
    12. Chen, Dongfang & Pei, Pucheng & Ren, Peng & Song, Xin & Wang, He & Zhang, Lu & Wang, Mingkai, 2022. "Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steinberger, Michael & Geiling, Johannes & Oechsner, Richard & Frey, Lothar, 2018. "Anode recirculation and purge strategies for PEM fuel cell operation with diluted hydrogen feed gas," Applied Energy, Elsevier, vol. 232(C), pages 572-582.
    2. Liu, Shihua & Chen, Tao & Zhang, Cheng & Xie, Yi, 2020. "Study on the performance of proton exchange membrane fuel cell (PEMFC) with dead-ended anode in gravity environment," Applied Energy, Elsevier, vol. 261(C).
    3. Wang, Bowen & Deng, Hao & Jiao, Kui, 2018. "Purge strategy optimization of proton exchange membrane fuel cell with anode recirculation," Applied Energy, Elsevier, vol. 225(C), pages 1-13.
    4. Chen, Dongfang & Pei, Pucheng & Ren, Peng & Song, Xin & Wang, He & Zhang, Lu & Wang, Mingkai, 2022. "Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 258(C).
    5. Barzegari, Mohammad M. & Dardel, Morteza & Alizadeh, Ebrahim & Ramiar, Abas, 2016. "Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator," Applied Energy, Elsevier, vol. 177(C), pages 298-308.
    6. Tsai, Shang-Wen & Chen, Yong-Song, 2017. "A mathematical model to study the energy efficiency of a proton exchange membrane fuel cell with a dead-ended anode," Applied Energy, Elsevier, vol. 188(C), pages 151-159.
    7. Chen, Ben & Zhou, Haoran & He, Shaowen & Meng, Kai & Liu, Yang & Cai, Yonghua, 2021. "Numerical simulation on purge strategy of proton exchange membrane fuel cell with dead-ended anode," Energy, Elsevier, vol. 234(C).
    8. Hou, Junbo & Yang, Min & Zhang, Junliang, 2020. "Active and passive fuel recirculation for solid oxide and proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 155(C), pages 1355-1371.
    9. Chen, Ben & Ke, Wandi & Luo, Maji & Wang, Jun & Tu, Zhengkai & Pan, Mu & Zhang, Haining & Liu, Xiaowei & Liu, Wei, 2015. "Operation characteristics and carbon corrosion of PEMFC (Proton exchange membrane fuel cell) with dead-ended anode for high hydrogen utilization," Energy, Elsevier, vol. 91(C), pages 799-806.
    10. Zhang, Qinguo & Tong, Zheming & Tong, Shuiguang & Cheng, Zhewu, 2021. "Modeling and dynamic performance research on proton exchange membrane fuel cell system with hydrogen cycle and dead-ended anode," Energy, Elsevier, vol. 218(C).
    11. Liu, Shihua & Li, Xiaoyang & Pang, Linjia & Geng, Tie & Guo, Yonggang & Jiang, Lin & Kang, Kejia & Wang, Xinchao & Liu, Zongyao, 2022. "Study on the effect of purging time on the performance of PEMFC with dead-ended anode under gravity," Renewable Energy, Elsevier, vol. 200(C), pages 1141-1151.
    12. Liu, Zhiyang & Chen, Jian & Liu, Hao & Yan, Chizhou & Hou, Yang & He, Qinggang & Zhang, Jiujun & Hissel, Daniel, 2020. "Anode purge management for hydrogen utilization and stack durability improvement of PEM fuel cell systems," Applied Energy, Elsevier, vol. 275(C).
    13. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
    14. Chen, Ben & Cai, Yonghua & Tu, Zhengkai & Chan, Siew Hwa & Wang, Jun & Yu, Yi, 2017. "Gas purging effect on the degradation characteristic of a proton exchange membrane fuel cell with dead-ended mode operation I. With different electrolytes," Energy, Elsevier, vol. 141(C), pages 40-49.
    15. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Bizon, Nicu, 2019. "Fuel saving strategy using real-time switching of the fueling regulators in the proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    17. shi, Lei & Tang, Xingwang & Xu, Sichuan & Liu, Ze, 2024. "Numerical research on liquid water removal mechanism and the influence of pore structure on water removal rate based on real pore GDL structure during shutdown purge of fuel cell," Energy, Elsevier, vol. 288(C).
    18. Kurnia, Jundika C. & Sasmito, Agus P. & Shamim, Tariq, 2019. "Advances in proton exchange membrane fuel cell with dead-end anode operation: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    19. Nicu Bizon & Phatiphat Thounthong, 2021. "A Simple and Safe Strategy for Improving the Fuel Economy of a Fuel Cell Vehicle," Mathematics, MDPI, vol. 9(6), pages 1-29, March.
    20. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Xuan, Jin & Jiao, Kui, 2019. "A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems," Applied Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:179:y:2019:i:c:p:173-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.