IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124018160.html
   My bibliography  Save this article

Optimization of hydrogen recirculation ejector for proton-exchange membrane fuel cells (PEMFC) systems considering non-equilibrium condensation

Author

Listed:
  • Ding, Hongbing
  • Zhang, Panpan
  • Dong, Yuanyuan
  • Yang, Yan

Abstract

In proton exchange membrane fuel cell (PEMFC) systems, unconsumed hydrogen recirculation is enabled by utilizing an ejector, and the PEMFC system's efficiency is thereby enhanced. Apart from the structural parameters, an ejector's performance is also significantly affected by the non-equilibrium condensation phenomenon. Therefore, the ejector structural parameters' impact upon non-equilibrium condensation intensity and ejector efficiency is investigated under design conditions. Structural optimization of the ejector is performed within its operating range to uphold optimal efficiency in the presence of fluctuations in secondary flow pressure. The result shows that non-equilibrium condensation negatively affects the ejector's efficiency, but its impact diminishes with larger mixing chamber diameters and nozzle divergence angles. The optimized ejector performs best with a 2.40 mm diameter mixing chamber and an 11.0o nozzle divergence angle. On average, the optimized ejector's performance improves by 16.8%, reaching a maximum improvement of 22.8% within the effective operating range.

Suggested Citation

  • Ding, Hongbing & Zhang, Panpan & Dong, Yuanyuan & Yang, Yan, 2024. "Optimization of hydrogen recirculation ejector for proton-exchange membrane fuel cells (PEMFC) systems considering non-equilibrium condensation," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018160
    DOI: 10.1016/j.renene.2024.121748
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124018160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Yan & Zhu, Xiaowei & Yan, Yuying & Ding, Hongbing & Wen, Chuang, 2019. "Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation," Applied Energy, Elsevier, vol. 242(C), pages 157-167.
    2. Tsai, Shang-Wen & Chen, Yong-Song, 2017. "A mathematical model to study the energy efficiency of a proton exchange membrane fuel cell with a dead-ended anode," Applied Energy, Elsevier, vol. 188(C), pages 151-159.
    3. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    4. Wang, Bowen & Deng, Hao & Jiao, Kui, 2018. "Purge strategy optimization of proton exchange membrane fuel cell with anode recirculation," Applied Energy, Elsevier, vol. 225(C), pages 1-13.
    5. Pei, Pucheng & Ren, Peng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Numerical studies on wide-operating-range ejector based on anodic pressure drop characteristics in proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 235(C), pages 729-738.
    6. Ding, Hongbing & Zhang, Yu & Sun, Chunqian & Yang, Yan & Wen, Chuang, 2022. "Numerical simulation of supersonic condensation flows using Eulerian-Lagrangian and Eulerian wall film models," Energy, Elsevier, vol. 258(C).
    7. Chen, Ben & Wang, Jun & Yang, Tianqi & Cai, Yonghua & Zhang, Caizhi & Chan, Siew Hwa & Yu, Yi & Tu, Zhengkai, 2016. "Carbon corrosion and performance degradation mechanism in a proton exchange membrane fuel cell with dead-ended anode and cathode," Energy, Elsevier, vol. 106(C), pages 54-62.
    8. Liu, Yang & Tu, Zhengkai & Chan, Siew Hwa, 2023. "Water management and performance enhancement in a proton exchange membrane fuel cell system using optimized gas recirculation devices," Energy, Elsevier, vol. 279(C).
    9. Jenssen, Dirk & Berger, Oliver & Krewer, Ulrike, 2017. "Improved PEM fuel cell system operation with cascaded stack and ejector-based recirculation," Applied Energy, Elsevier, vol. 195(C), pages 324-333.
    10. Ding, Hongbing & Dong, Yuanyuan & Zhang, Yu & Yang, Yan & Wen, Chuang, 2023. "Energy efficiency assessment of hydrogen recirculation ejectors for proton exchange membrane fuel cell (PEMFC) system," Applied Energy, Elsevier, vol. 346(C).
    11. Ding, Hongbing & Dong, Yuanyuan & Zhang, Yu & Wen, Chuang & Yang, Yan, 2024. "Exergy performance analysis of hydrogen recirculation ejectors exhibiting phase change behaviour in PEMFC applications," Energy, Elsevier, vol. 300(C).
    12. Liu, Zhiyang & Chen, Jian & Liu, Hao & Yan, Chizhou & Hou, Yang & He, Qinggang & Zhang, Jiujun & Hissel, Daniel, 2020. "Anode purge management for hydrogen utilization and stack durability improvement of PEM fuel cell systems," Applied Energy, Elsevier, vol. 275(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Dongfang & Pei, Pucheng & Ren, Peng & Song, Xin & Wang, He & Zhang, Lu & Wang, Mingkai, 2022. "Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 258(C).
    2. Jianmei Feng & Jiquan Han & Zihui Pang & Xueyuan Peng, 2023. "Designing Hydrogen Recirculation Ejectors for Proton Exchange Membrane Fuel Cell Systems," Energies, MDPI, vol. 16(3), pages 1-10, January.
    3. Song, Yajie & Wang, Chen & Wang, Lei & Wang, Xinli & Jia, Lei, 2025. "Design criterion of critical mode ejector for PEMFC hydrogen supply and recycle system," Applied Energy, Elsevier, vol. 377(PB).
    4. Ding, Hongbing & Dong, Yuanyuan & Zhang, Yu & Yang, Yan & Wen, Chuang, 2023. "Energy efficiency assessment of hydrogen recirculation ejectors for proton exchange membrane fuel cell (PEMFC) system," Applied Energy, Elsevier, vol. 346(C).
    5. Steinberger, Michael & Geiling, Johannes & Oechsner, Richard & Frey, Lothar, 2018. "Anode recirculation and purge strategies for PEM fuel cell operation with diluted hydrogen feed gas," Applied Energy, Elsevier, vol. 232(C), pages 572-582.
    6. Song, Yajie & Wang, Xinli & Wang, Lei & Pan, Fengwen & Chen, Wenmiao & Xi, Fuqiang, 2021. "A twin-nozzle ejector for hydrogen recirculation in wide power operation of polymer electrolyte membrane fuel cell system," Applied Energy, Elsevier, vol. 300(C).
    7. Liu, Shihua & Chen, Tao & Zhang, Cheng & Xie, Yi, 2020. "Study on the performance of proton exchange membrane fuel cell (PEMFC) with dead-ended anode in gravity environment," Applied Energy, Elsevier, vol. 261(C).
    8. Chen, Huicui & Zhang, Ruirui & Xia, Zhifeng & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Experimental investigation on PEM fuel cell flooding mitigation under heavy loading condition," Applied Energy, Elsevier, vol. 349(C).
    9. Wang, Bowen & Deng, Hao & Jiao, Kui, 2018. "Purge strategy optimization of proton exchange membrane fuel cell with anode recirculation," Applied Energy, Elsevier, vol. 225(C), pages 1-13.
    10. Liu, Shihua & Li, Xiaoyang & Pang, Linjia & Geng, Tie & Guo, Yonggang & Jiang, Lin & Kang, Kejia & Wang, Xinchao & Liu, Zongyao, 2022. "Study on the effect of purging time on the performance of PEMFC with dead-ended anode under gravity," Renewable Energy, Elsevier, vol. 200(C), pages 1141-1151.
    11. Masoud Arabbeiki & Mohsen Mansourkiaei & Domenico Ferrero & Massimo Santarelli, 2024. "Ejectors in Hydrogen Recirculation for PEMFC-Based Systems: A Comprehensive Review of Design, Operation, and Numerical Simulations," Energies, MDPI, vol. 17(19), pages 1-22, September.
    12. Hangyu Jiang & Zhou Zhao & Peiyong Ni, 2024. "Structural Design and Optimization of Proton Exchange Membrane Fuel Cell Ejector," Sustainability, MDPI, vol. 16(22), pages 1-16, November.
    13. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
    14. Zecheng Xu & Bo Liu & Yuqi Tong & Zuomin Dong & Yanbiao Feng, 2024. "Modeling and Control of Ejector-Based Hydrogen Circulation System for Proton Exchange Membrane Fuel Cell Systems," Energies, MDPI, vol. 17(11), pages 1-14, May.
    15. Chen, Xin & Zhang, Ying & Xu, Sheng & Dong, Fei, 2023. "Bibliometric analysis for research trends and hotspots in heat and mass transfer and its management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 333(C).
    16. Ding, Hongbing & Dong, Yuanyuan & Yang, Yan & Wen, Chuang, 2024. "Performance and energy utilization analysis of transcritical CO2 two-phase ejector considering non-equilibrium phase changes," Applied Energy, Elsevier, vol. 372(C).
    17. Xia, Zhifeng & Chen, Huicui & Zhang, Ruirui & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Behavior analysis of PEMFC with geometric configuration variation during multiple-step loading reduction process," Applied Energy, Elsevier, vol. 349(C).
    18. Hoang Nghia Vu & Dinh Hoang Trinh & Dat Truong Le Tri & Sangseok Yu, 2023. "Bypass Configurations of Membrane Humidifiers for Water Management in PEM Fuel Cells," Energies, MDPI, vol. 16(19), pages 1-17, October.
    19. Dashti, Isar & Asghari, Saeed & Goudarzi, Mohammad & Meyer, Quentin & Mehrabani-Zeinabad, Arjomand & Brett, Dan J.L., 2019. "Optimization of the performance, operation conditions and purge rate for a dead-ended anode proton exchange membrane fuel cell using an analytical model," Energy, Elsevier, vol. 179(C), pages 173-185.
    20. Shen, Jun & Du, Changqing & Yan, Fuwu & Chen, Ben & Tu, Zhengkai, 2022. "Experimental study on the dynamic performance of a power system with dual air-cooled PEMFC stacks," Applied Energy, Elsevier, vol. 326(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.